



Les Technologies des Objets Connectés Industriels de l'Usine du Futur Rôle de l'Internet des Objets et du Big Data

Dickel SOORIAH, Marketing & Business Development Director

\*\*\*\*\*\*\*\*\*



Internet of Things will be the next revolution of the Internet. It will gather, analyze, and distribute data turning it into information and knowledge, creating a 7 trillion dollar business.





## The digital oil field



#### Remote area oil field:

- Temperature monitoring
- Oil/gas tank pressure monit.

\*\*\*\*\*\*\*\*\*\*\*\*

- Leakage detection
- Elec/Gas/water metering
- Asset GPS tracking
- Vibration monitoring
- Geo fencing
- Energy consumption optimisation
- Human tracker

## Smart agriculture



#### Smart agriculture:

- Temperature monitoring

\*\*\*\*\*\*\*\*\*

- Remote irrigation
- Humidity monitoring
- Elec/Gas/water metering
- Animale GPS tracking
- Geo fencing
- Energy consumption optimisation
- Human tracker

## Marine tracking



#### Smart agriculture:

- Comfort monitoring on the vessels

\*\*\*\*\*\*\*\*\*

- Asset tracking
- Fleet management

## Industrial IoT Challenge #1: Low battery long range connectivity

#### Positioning ThingPark Wireless & LoRa



LPWA is not competing with traditional cellular (4% of the LPWA connections are expected to overlap)



\*\*\*\*\*\*\*\*\*\*

#### Requirements for LPWA Networks

#### Power source

Making a service that can operate for years on the same batteries opens many possible markets (gas and water meters in particular)

#### Range & penetration

Ability to reach deep indoor applications such as connecting meters located in basements and sensors monitoring sewer condition.

#### Cost

\*\*\*\*\*\*\*\*\*

Modems under \$5 & annual connectivity costing less than \$1, LPWA will be more competitive than traditional cellular solutions

## 10 Billion USD

Revenues from connectivity services alone\*

## 3 Billion

LPWA Connections by 2023\*







#### Low Power IoT Alliance

https://www.lora-alliance.org





#### Introduction – LoRaWAN MAC Header

|              | ne type value<br>B <sub>7</sub> b <sub>6</sub> b <sub>5</sub> | Description             |              |          |             |            |
|--------------|---------------------------------------------------------------|-------------------------|--------------|----------|-------------|------------|
|              | 000 Join Request                                              |                         |              |          |             |            |
|              | 001 Join Accept                                               |                         |              |          |             |            |
|              | 010 Unconfirmed Data                                          |                         |              |          |             |            |
|              |                                                               |                         | irmed Data   |          |             |            |
|              | 011110                                                        | Reserved for future use |              |          |             |            |
|              | 111 Proprietary                                               |                         |              |          |             |            |
| Fram<br>type | KEU                                                           | Major<br>version        |              |          |             | 4          |
| MHDR         | MHDR                                                          |                         | Data message |          |             | 32 bit MIC |
|              | 723                                                           |                         |              |          |             |            |
|              |                                                               | 723                     |              | 01       |             |            |
|              |                                                               | 723<br>FHDR             |              | 01       | Frm_Payload |            |
|              | 4                                                             |                         | 2            |          | Frm_Payload |            |
|              | 4<br>DevAddr                                                  | FHDR                    | 2<br>FCnt    | Port     | Frm_Payload |            |
|              |                                                               | FHDR 1                  |              | Port 015 | Frm_Payload |            |
| Bits         |                                                               | FHDR  1 FCtrl           |              | Port 015 | Frm_Payload |            |



#### Key LoRaWAN Verticals



Smart metering



Street lighting



Smart building



\*\*\*\*\*\*\*\*\*\*\*

**Smart parking** 



Tracking



Leak detection & irrigation



Water level & flood management



Fault management



Smoke detectors



Smart energy & fast demand response



Waste management



Traffic management



\*\*\*\*\*\*\*\*\*\*\*\*







## Using Utility high points to achieve higher range



> 20m high telecom pole

\*\*\*\*\*\*\*\*\*\*\*

- Omnidirectional antenna 30cm
- 14km in directions where antenna is above mean hill level





## Smart Metering

Supporting multiple utility metering with one network





Supporting new innovative pricing models







····

\*\*\*\*\*\*\*\*\*\*\*

#### Using Proximus LoRa Network in Belgium for wide area connectivity







\*\*\*\*\*\*\*\*\*\*\*

#### Proximus IoT Use Cases

**Food Control** 



**Smart Parking** 



#### Airport asset tracking



Facility management



https://www.youtube.com/results?search\_query=proximus+lora



\*\*\*\*\*\*\*\*\*

## Example of IoT application in SmartGrid



Real-time Energy Markets



#### Example of Smart Demand Response in Belgium

- De Watergroep has water storage under pressure (reservoirs an water towers)
- Therefore, they can start or stop our high pressure pumps at all times (within certain boundaries)
- Using Actility's real-time management and measurement of their system
  - Financial profit
  - Social profit, given the predicted power outages during winter period in Belgium ("brown outs")







\*\*\*\*\*\*\*\*\*



# Industrial IoT Challenge #2 Data & Application Later Mediation

\*\*\*\*\*\*\*\*\*\*

## The value of unified exposure of Industrial Protocols

#### First level of syntax standardization:

- REST: do everything with 4 verbs and 'documents'
- Documents use XML and MIME types





\*\*\*\*\*\*\*\*\*\*\*\*\*

# Semantic level: Generic concepts

|                                    | ZigBee       | BACnet                         | KNX              | Zwave            | DLMS/COSEM       |
|------------------------------------|--------------|--------------------------------|------------------|------------------|------------------|
| Network                            | yes          | yes                            | yes              | yes              | yes              |
| Object                             | ZB node      | BACnet device                  | KNX device       | Zwave node       | Cosem server     |
| Object App.                        | endpoint     | Not native use Structured view | No (just 1)      | Device class     | Logical device   |
| Interface                          | cluster      | Structured View                | Functional block | Command class    | Interface object |
| Basic<br>elements<br>(incl. Point) | Simple types | Objects                        | Datapoints       | Types attributes | Attributes       |
|                                    |              |                                |                  |                  |                  |



\*\*\*\*\*\*\*\*\*



- Chaque technologie gère des réseaux
- Chaque réseau contient des nœuds
- Chaque nœud contient des applications
- Chaque application contient des interfaces
- Chaque interface contient des points...



## ThingPark ETSI M2M – ONE M2M API

- ETSI M2M defines a service capability layer on top of connectivity layers
- It presents an API for application development based on REST principles
- ETSI M2M key assets include:
  - Standard API for messaging, FIFO storage, Access Control
  - Standard Access to any REST interface
  - Standard interface to local M2M gateways
  - Standard and uniform resource designs for major automation protocols: ZigBee, WMBUS, KNX, ModBus



\*\*\*\*\*\*\*\*\*\*\*\*







Q&A

Thank you



France, Benelux, UK, Singapore



contact@actility.com



+33 1 85 09 80 00