ASPROM, Paris, 2016 Séminaire « Stockage de l'énergie, quelles technologies ? Pour quelles applications ? Pour quand ? »

Mise en œuvre des systèmes de stockage d'énergie électrique (batteries lithium-ion et supercondensateurs) : vers un BMS qui améliore leur durée de vie

ASPROM / UIMM / CAP'TRONIC, Paris, 2016

Pascal VENET pascal.venet@univ-lyon1.fr

PLAN

- Présentation des systèmes de stockage considérés (batteries lithium-ion et supercondensateurs)
- Vieillissement et durée de vie des systèmes de stockage
- ♦ Assemblage des cellules
- **Solutions** d'un BMS
- Équilibrages classique et original maximisant la durée de vie
- Sonclusion

🏷 Diagramme de Ragone

Lyon 1

🌭 Diagramme de Ragone

Impere

ADDRESS

Lyon 1

Avantages des accumulateurs lithium-ion

Densité d'énergie élevée
Autodécharge faible
...

Impere

Avantages des supercondensateurs

- 🏷 Densité de puissance élevée
- Durée de vie (cyclabilité) élevée (plusieurs 100 000 à 1 000 000 de cycles)

www.ineris.fr/centredoc/ve-technologies-batteries-couv-ineris.pdf

<u>Remarque cyclabilité</u> : nombre de cycles = cycles après charges/décharges complètes (~ qq 1000 cycles annoncés pour batterie Li-ion peut correspondre à ~ qq 10 000 ou qq 100 000 cycles si utilisation batterie autour de 50 % de SOC (~ 40 à 60 % de SOC comme pour véhicule hybride))

€ ...

Exemples d'application

Batterie lithium-ion ou supercondensateurs : des applications différentes...

<u>Exemple pour un véhicule</u>	< 2016	≥ 2016
🏷 Véhicule électrique	16 kWh	-
Batterie lithium-ion	22 kWh	41 kWh
	-	60 kWh
	24 kWh	30 kWh

... pour une autonomie courante autour des 400 km (mondial de l'automobile 2016)

Exemples d'application

Batterie lithium-ion, supercondensateurs : des applications différentes...

Exemple pour un véhicule

Start) Micro-hybridation véhicule (Stop & Start)

Supercondensateurs

<u>Système e-Hdi PSA</u>: 2 superC de 1200 F

- Citroën C2, C3, C4, C5
- Peugeot 208, 308, 508, 3008

Système i-ELOOP Mazda

• Mazda 3 et 6

Electric Double Layer Capacitor

PSA PEUGEOT CITROËN e-HDi

Constitution semblable entre accumulateurs et supercondensateurs

Impere

Différentes chimies usuelles d'accumulateurs lithium-ion

Electrode négative -: Li_xC_vD_w

Impere

- Usuellement graphite lithié LiC₆
 Titanates (LTO) (Li₄Ti₅O₁₂ par ex.)
- <u>Electrode positive +</u> : $Li_xA_yB_z$
 - Dioxyde de Cobalt (LCO) (LiCoO₂)
- Nickel-Cobalt-Manganèse (NMC) (LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ par ex.)
- Lithium Manganèse Oxyde (LMO) (LiMn₂O₄ par exemple)
- Nickel-Cobalt-Aluminium (NCA) (LiNi_{0.8}Co_{0.16}Al_{0.06}O₂ par ex.)

Lyon 1

Lithium Fer Phosphate (LFP) (LiFePO4)

Principe des supercondensateurs à double couche électrique

mpere

Vieillissement des accumulateurs lithium-ion

Vieillissement des supercondensateurs à double couche électrique

Lyon 1

Mécanismes et modes de dégradation des SSEE

Causes

- ♦ Structurelles
- ♦ Chimiques et/ou thermodynamiques

Conséquences

- 🌭 Diminution de la capacité
 - C(Ah) pour accumulateurs
 - ∠C(F) pour supercondensateurs
- Augmentation de l'impédance série

⊿ Z^s on

> ESR (Equivalent Series Resistance)

Lyon 1

<u>Cinétique dépendante de :</u>

- 🏷 Température (loi d'Arrhenius)
- 🏷 Etat de charge
 - SOC pour accumulateurs
 - Tension pour superC
- Kégime (valeurs de courant)
 ...

2 types de vieillissement

- Calendaire : SSEE au repos (température et état de charge donnés)
- Cyclage : SSEE en usage (charge/décharge en courant)

Exemples de modèles de durée de vie des SSEE

<u>Critères de fin de vie usuellement admis</u>

♥ > C(t) jusqu'à C(t) = 0,8.C(0)
 ♥ ↗ ESR(t) jusqu'à ESR(t) = 2.ESR(0)

Estimation durée de vie = temps jusqu'à ce que l'un des critères de fin de vie soit atteint

Supercondensateurs

SCIENTIFICU

<u>Loi d'Eyring</u> : Généralise la loi d'Arrhenius à d'autres contraintes

 \mathbf{b} Durée de vie τ si contraintes \mathbf{T}_{sc} , \mathbf{V}_{sc} , I fixes

$$\boldsymbol{\tau}(\boldsymbol{T}_{SC}, \boldsymbol{V}_{SC}, \dots) = \boldsymbol{\tau}_{0} \cdot \boldsymbol{e}^{\left(-\frac{T_{SC}}{T_{0}}\right)} \cdot \boldsymbol{e}^{\left(-\frac{V_{SC}}{V_{0}}\right)} \cdot \boldsymbol{e}^{\left(-\frac{I_{eff}}{I_{0}}\right)} \dots$$

 \mathbf{V} Durée de vie τ si contraintes variables $T_{sc}(t)$, $V_{sc}(t)$, $I_{sc}(t)$

$$\tau \left(V_{SC}(t), T_{SC}(t), I_{eff}(t) \right) = \frac{\left(t_f - t_i \right)}{\frac{1}{\tau_0} \cdot \int_{t_i}^{t_f} e^{\left(\frac{V_{sc}(t)}{V_0} + \frac{T_{sc}(t)}{T_0} + \frac{I_{eff}(t)}{I_0} \right)} dt$$

 T_{SC} : température instantanée du SC [°C] V_{SC} : tension instantanée du SC [V] I_{eff} : courant efficace du SC [A] [t_i , t_f]: l'intervalle de temps de l'analyse

Exemples de modèles de durée de vie des SSEE

Batterie lithium-ion

Vieillissement calendaire

IN DECEMBER 10

Perte de capacité Q_L VS quantité de charge disponible Q_{α} (image du SOC)

Lyon 1

J. Wang et all "Cycle-life model for graphite-LiFePO4 cells," J. Power Sources (2011)

Assemblage des cellules

Dispersions des caractéristiques entre chaque composant dues :

 aux tolérances sur les paramètres compte tenu du procédé de fabrication
 à la différence de température à laquelle peuvent être soumis des composants d'un même module

Photo de la face instrumentée d'un module de supercondensateur <u>Photo thermique d'un module de</u> supercondensateur

à la non similitude du vieillissement entre les composants d'un même module

-40

-34 -32 -30

Battery Management System (BMS)

⇒ Risques pour le système et l'utilisateur

Ampere

RENATIONAL

ADDRESS

Nécessité d'associer un système de gestion d'énergie BMS

(ou SMS pour supercondensateurs)

Lyon 1

Ampère — Fonctionnalités

- ♦ Mesures (V, I, T)
- 🏷 Estimations des paramètres
- 🏷 Gestion
- 🏷 Sauvegarde
- 🏷 Communication

<u>Fonctionnalités</u>

Ampere

- 🏷 Mesures (V, I, T)
- 🏷 Estimations des paramètres
 - C(†), ESR(†), ...
 - SOC(†), SOH(†), ...
- \mathbf{b} Gestion
- 🏷 Sauvegarde
- 🏷 Communication

<u>Fonctionnalités</u>

mpere

- 🏷 Mesures (V, I, T)
- 🏷 Estimations des paramètres
- 🏷 Gestion
 - Sécurité / Thermique / Equilibrage
- 🏷 Sauvegarde
- 🏷 Communication

<u>Fonctionnalités</u>

Ampère

- 🏷 Mesures (V, I, T)
- 🏷 Estimations des paramètres
- 🏷 Gestion
- 🏷 Sauvegarde
 - V(max/min), I(max/min), T(max/min), ESR(t), C(t)
- 🏷 Communication

Fonctionnalités

Ampere

- 🏷 Mesures (V, I, T)
- 🏷 Estimations des paramètres
- 🏷 Gestion
- 🏷 Sauvegarde
- ♦ Communication

Equilibrage des cellules

<u>Equilibrage des tensions : circuits d'équilibrage</u>

- 🌭 Egalise les tensions entre éléments
- 🌭 Protège les éléments de la surcharge et la sur-décharge

Equilibrage dissipatif

🏷 Circuits d'équilibrage dissipatif

Résistif

Rendement énergétique (faible) Coût (acceptable)

Lyon 1

Equilibrage redistributif

🏷 Circuits d'équilibrage redistributif

- Capacitif ou inductif ou avec transformateur
- Rendement énergétique (bon)
 Coût (élevé)

S. Shili, Thèse Univ. Lyon 1, 2016

Exemple : équilibrage de supercondensateurs

Type de Système d'équilibrage	Sans système d'équilibrage	Circuit dissipassif avec R=50 Ω	Circuit dissipatif commandé avec R≈1Ω	Convertisseur Buck-Boost
Capacité de SC1=C Capacité de SC2=0,8.C	$ \begin{array}{c} $	U_{SC1} U_{SC2} U_{SC2} U_{SC2}	U_{SC1} U_{SC1} U_{SC2} U_{SC2} U_{SC2} U_{SC2}	$ = \begin{bmatrix} \mathbf{U}_{SC1} \\ \mathbf{U}_{SC1} \\ \mathbf{U}_{SC2} $
Durée de vie du module	1,4 années	3,5 années	6,0 années	6,0 années
Nénergétique %	100	77	91	93
Coût	Faible	Faible	Acceptable	Elevé

CENTRALE

Ampere -

INSA

Ampère

Vers un équilibrage des durées de vie des cellules

Dans un assemblage de cellules :

- Dispersion des tensions (résolue grâce à la fonction d'équilibrage du BMS)
 Dispersion de températures (plus de 10 °C)
 - Dispersion des vitesses de dégradation
 - A tension égale le module reste limité par son élément le plus faible

Photo de la face instrumentée du module de stockage

Vers un équilibrage des durées de vie des cellules

Contrôler les circuits d'équilibrage en vue d'améliorer la durée de vie des supercondensateurs

- b On ne cherche plus à équilibrer les tensions
- b On cherche à équilibrer les vitesses de dégradation
 - Estimer le niveau de dégradation de chaque cellule via le SOH donné par le BMS ou via le circuit d'équilibrage (cf. ci-dessous)
 - Adapter la commande des circuits d'équilibrage en vue de réduire les sollicitations des cellules les plus faibles

Vers un équilibrage des durées de vie des cellules

Si SOH estimé par circuit d'équilibrage, 2 étapes de commande des circuits d'équilibrage :

& Estimer la durée de vie des cellules (diagnostic) (commande occasionnelle)

Améliorer la durée de vie des supercondensateurs (Equilibrage) (commande continue)

Estimation de la durée de vie des supercondensateurs via la circuit d'équilibrage

Critère de fin de vie considéré ESR(t) = 2.ESR(0)

Ampere

Estimation de ESR(t) grâce à la commutation autour de la fréquence de résonance Δ fr du circuit d'équilibrage

npere

Diagramme de Bode de différents SCs

Estimation de la durée de vie des

supercondensateurs via la circuit d'équilibrage

Mesures de la tension et du courant dans la bande de fréquence Δ fr \Rightarrow Z(t) donc ESR(t) puisque Z(t) = ESR(t) pour les fréquences considérées

Lyon 1

Lyon 1

Proposition d'une approche de commande originale : adaptation de la tension du SC à sa vitesse de dégradation

SCs les moins dégradés Plus sollicités

Proposition d'une approche de commande originale : adaptation de la tension du SC à sa vitesse de dégradation

SCs les plus dégradés Moins sollicités

Contrôle des circuits d'équilibrage en vue d'améliorer la durée de vie des supercondensateurs

Proposition d'une approche de commande originale : adaptation de la tension du SC à sa vitesse de dégradation

Equilibrer les niveaux de dégradation Maximiser la durée de vie du module

Contrôle des circuits d'équilibrage en vue d'améliorer la durée de vie des supercondensateurs

Etude d'un module de 3 SCs avec dispersion de températures

- 🌭 Comparaison de l'impact de la commande sur l'évolution des SC avec :
 - Un équilibrage classique en tension
 - L'équilibrage en durée de vie proposé

Contrôle des circuits d'équilibrage en vue d'améliorer la durée de vie des supercondensateurs

Exemple de résultat de commande des circuits d'équilibrage

mpere

Contrôle des circuits d'équilibrage en vue d'améliorer la durée de vie des supércondensateurs

Exemple de résultat de commande des circuits d'équilibrage

Impere

3300

3000

2700

Conclusion

Applications différentes pour batterie lithium-ion (source d'énergie) et supercondensateurs (source de puissance)

SSEE = composants avec période d'usure et donc à durée de vie limitée

- burée de vie modélisable par loi analytique (Eyring, ...)
- BMS et équilibrage nécessaires pour gérer l'énergie d'un assemblage de plusieurs cellules

🗞 Equilibrage innovant maximisant la durée de vie du SSEE

MERCI pour votre attention

