

L'hstockage de la chaleur au service du stockage de l'hydrogène

Philippe MARTY, Laboratoire LEGI, Prof. UGA Patricia de RANGO, Institut Néel, CNRS

Un réseau d'H2 existe déjà...

Des véhicules H2 existent...

... mais le stockage de H2 reste délicat

Stockage liquide :

T= - 253 °C énergie de liquéfaction = 30 % de l'énergie chimique de H2

Stockage comprimé :

P>700 bar pour une voiture: difficulté technique et d'acceptabilité

Stockage solide :

Adsorption: capture en surface des molécules de H2 (sur du carbone par exemple)

Absorption: insertion de molécules de H2 dans la structure chimique de l'absorbant (poudres métalliques dans notre cas)

Les hydrures métalliques réversibles

- grande capacité volumique
- sécurité (basse pression, désorption endothermique)
- hydrogène très pur

Capacité	Volumique (kg H ₂ / m ³)	massique (%)
H ₂ gaz 700 bar	62	100
H ₂ Liq.	70	100
LaNi ₅ H ₆	123	1.4
Ti-V-Cr	205	3.5
AINaH ₄	96	7.5
MgH ₂	106	7.6

Absorption d'H2 sur LaNi5

Mousse d'aluminium

Absorption d'H2 sur le magnésium

 $MgH_2 \rightarrow \Delta H = -74 \text{ kJ} / \text{mol } H_2$ $H_2 \text{ LHV} \rightarrow 250 \text{ kJ} / \text{mol } H_2$

Production de poudre de MgH₂

Préparation par ball-milling avec des métaux de transition (V, Ti, Nb,..)

Les métaux de transition augmentent la vitesse d'absorption (G.Liang,1999)

Large scale energetic ZOZ ball-miller

Influence du temps de broyage

 $MgH_2 + 5 \%$ at. V (40 μ m)

Optimum \approx **20** h de broyage

Grand impact du temps de broyage, spécialement lors de la désorption

L'équilibre Mg / MgH₂

Gestion thermique

<u>Absorption exothermique</u> ⇒ élévation soudaine de température => équilibre immédiatement atteint => arrêt de l'hydrogénation

Temps de chargement directement lié à l'efficacité du transfert de chaleur

Objectif majeur = <u>controler les transferts</u> <u>thermiques</u>

Chargement @ 0,75 Mpa:

Champ d'hydrogénation

Disques compactés de MgH₂ + Graphite Naturel expansé

MgH₂ = faible conductivité thermique (< 0.25 W/m.K)

 $\begin{array}{c} \textbf{Compact } \Phi \text{ 100 mm} \\ \text{60 NI H}_2 \end{array}$

Mélange MgH₂ + 5 wt. % GNE

Compaction axiale

 $\begin{array}{c} \textbf{Compact} \ \Phi \ \textbf{300} \ \textbf{mm} \\ \textbf{600} \ \textbf{NI} \ \textbf{H}_2 \end{array}$

*Disques compactés de MgH*₂ + *Graphite Naturel expansé*

10% wt. de GNE = $30 \times \text{cond.}$ therm. de la poudre seule

Les premiers réservoirs

Les premiers réservoirs

Vers un reservoir adiabatique

empilement : 73 disks / 13 cm in diam. 10 kg MgH₂ + 5 %wt EGN 126 kg Mg-Zn-Al

Pourquoi stocker la chaleur de desorption ?

Désorption exothermique

 $MgH_2 \rightarrow \Delta H = -74 \text{ kJ} / \text{mol } H_2$ $H_2 \text{ LHV} \rightarrow 250 \text{ kJ} / \text{mol } H_2$

Rendement thermique < 70 %

→ Introduction d'un Matériau à Changement de Phase (MCP)

La chaleur libérée lors de l'absorption est réutilisée lors de la désorption

Comment choisir la temperature du MCP ?

Facteur limitant = λ_{MCP}

Sels fondus : grand ΔH_m (> 230J/g) mais faible $\lambda \approx 0.5$ - 0.8 W/m.K

Un matériau métallique est requis

Modélisation 3D

Exemple d'un réservoir de 110 g H₂

Bon accord entre expériences et modélisation

Modélisation 1D simplifiée

In-situ dilatometry measurements

Experimental set-up

LVDT Dilatometer

Accuracy 0,5 µm Amplification x 9.6

Pressure calibration of the LVDT dilatometer

Les produits McPHY

Les hydrures comme compresseurs d'hydrogène

Financement Carnot Energies du Futur, collaboration CEA-LITEN/CNRS

Application visée: Compression de l'hydrogène pour les stations-services (réservoirs à 700 bars)

Exemple d'une compression multi-étagée pour atteindre 700 bars

Conclusion

- Plus de 10 ans de R&D pour aboutir à une solution industriellement viable
- Large soutien régional et européen
- TRL 6 atteint grâce notamment à l'Institut Carnot
 « Energies du futur »
- Technologie actuellement exploitée par McPhy
- Comme pour le stockage de chaleur, le stockage d'hydrogène nécessite une recherche pluridisciplinaire incluant:
 Matériaux - thermique - écoulements