"Les réseaux intelligents d'eau, de gaz et d'électricité. Technologies, enjeux et applications", ASPROM, Paris, 1-2 avril 2015

Énergies renouvelables météo-dépendantes. Le rôle de la prévision court-terme

Georges Kariniotakis

HdR, Responsable du Groupe Energies Renouvelables et Smartgrids georges.kariniotakis@mines-paristech.fr

MINES ParisTech > Centre PERSEE

PERSEE: Centre for Processes, Renewable Energies and Energy Systems.

- <u>Renewable Energies & Smartgrids.</u>
- Sustainable technologies & processes
- Materials for energy

MINES ParisTech @ Sophia Antipolis

MINES ParisTech > Centre PERSEE

 Research axis « Renewable energies & smartgrids »: Development of methods and tools to facilitate the integration of distributed generation and renewable energies (RES) into power systems and electricity markets.

VES Tech

3

Towards a weather dependent power system?

- In 2007 the European Council sets new targets for renewables, 20-20-20 by 2020 for EU-27.
 - ✓ -20% GHG emissions /1990 or more,
 - ✓ +20% renewables in final energy consumption,
 - ✓ -20% primary energy (energy efficiency).

- These translate to ambitious targets for wind and solar energy :
 - ✓ 230 GW for wind energy. Capable of covering 14-18% of the EU-27 electricity demand (109 GW in 2012) [EWEA].
 - ✓ **150 GWp** for **PV** is [EREC] (350 GWp [EPIA]).

Renewable energy sources (RES) variability

- Both wind and PV generation are **highly variable** due to their dependence on the weather conditions.
- Example of the production of a wind farm (1 month period, complex terrain):

Renewable energy sources (RES) variability

- Both wind and PV generation are **highly variable** due to their dependence on the weather conditions.
- Example of the production of a **PV plant**:

Renewable energy sources (RES) variability

• The geographical distribution of RES plants brings a **smoothing effect**

nwf.

• Smoothing factor: S =

$$1 - \frac{\frac{V(\sum_{i=1}^{N} P_{i}^{-f})}{\left(\sum_{i=1}^{N} P_{inst,i}^{wf}\right)^{2}}}{\frac{1}{N} \sum_{i=1}^{n} \frac{V(P_{i}^{wf})}{\left(P_{inst,i}^{wf}\right)^{2}}}$$

 $- \sqrt{N}$

Quantifies the reduction in the variance of the sum compared to the individual plants.

4

7

ParisTech

• **Example:** Denmark (23 Wind farms)

Challenges in managing the power system

- <u>Maximise the use of RES generation</u>, while maintaing a <u>secure</u> and <u>economic</u> power system operation.
- RES penetration (t) = RES production (MW) at time t Total demand (MW) at time t

• Necessity for advanced power system management tools for power systems with high RES penetration.

*

* Different definitions exist for other purposes.

Examples of high RES penetration (Spain)

• **59.6% max** hourly penetration level (11/6/2011)

MINES

ParisTech

Examples of high RES penetration (Germany)

• 40% max hourly penetration (2013/04/15)

Planned production (power)

displayed day: 2013/04/13 Latest update: 2013/04/12, 06:00:20 pm

displayed day: 2013/04/13 Latest update: 2013/04/12, 06:00:19 pm

10

'aris**lech**

Examples of high RES penetration (Denmark)

• 100% max hourly penetration level in Denmark (DK1 area) in 2007

Examples of high RES penetration (island of Crete)

53% max penetration level in the island of Crete, Greece (4/4/2012).

Time of day (h:min:s)

Short-term forecasts of RES generation

• Accurate forecasts of RES generation contribute to operate the power system in a secure and economic way

ParisTech

Overview of the end-user needs

- Forecasts of the RES generation for the near future (hours, days) and estimations of the uncertainty are needed for:
 - Economic dispatch (set points to conventional units and wind farms)
 - Scheduling/Unit commitment of the power system generators.
 - Planning reserves to compensate wind fluctuations.
 - Congestion management
 - Planning the use of energy (hydro) storage.
 - Planning power exchanges/flows/maintenance with interconnections.

TSO, DSOs

- Planning maintenance of the wind farms for the next days (offshore).
- Making bids in an electricity market
- etc.

14

A complex problem...

• Forecasting wind power is a complex problem. Some of the reasons:

Wind is highly variable by nature... (example: wind production of a wind farm during a month)

The wind turbine characteristic curve introduces important non-linearities.

The forecasts performance

- The accuracy depends on :
 - The quality of weather forecasts
 - The forecast horizon
 - The season, the climatic conditions
 - The terrain complexity (for wind)

- The type of input and models
- The level of production
- The level of aggregation

Factors affecting accuracy: Spatial smoothing effect

Example :

- Prediction of 2200 MW in Jutland area in DK
- SCADA measurements only from 23 WFs (~200 MW).
- Differenced measurements of the total production.
- Prediction of 23 WFs output
- Then upscale to the total area.

Evolution of forecasts performance through time

Evolution for the case of single wind farms

Source: GL Garrad Hassan, EWEA 2012

ParisTech

Evolution of performance through time (Spain)

- NMAE* performance between **1%-4.5%** (1h-48h). **<4%** for 24h.
- Progressive improvement between 2005 and 2009

NMAE: Normalised Mean Absolute Error (percentage of Installed Capacity)

Evolution of performance through time (Germany)

Wind forecasting:

- "3.7% NRMSE* for day ahead delivered at 8 am the day before (2011) (time step 15 min, 96 predictions).
- 2.1 % NRMSE* for rolling 2 hour ahead forecast (so for intraday trading) (jan until nov 2011) (evaluated by a German TSO)"

PV forecasting:

- ✓ 4.17 % RMSE (only sunshine hours, so without night values) for day ahead delivered at 8 am the day before (3-10/2011)
- 2.85 % RMSE (only sunshine hours, so without night values) for rolling 2 hours ahead forecast (3-10/2011)"

(*) NRMSE – Normalised Root Mean Square Error (as a function of installed capacity

- The actual wind power forecasting technology is quite mature
- However, in some situations large forecast errors may have an important impact on the power system operation
- Intensive R&D: 3 large EU projects (Anemos, Anemos.plus, SafeWind)

Forecast of total wind generation in Germany*: Path of low-pressure system was different than predicted resulting to a maximum error of 5500 MW

'aris**lech**

"Deterministic" (spot) approaches

1990

Statistical/time-series approaches

2002

- Artificial intelligence
- Physical modelling
- Empiric/hybrid implementations into operational forecast tool

- 1st benchmarking (Anemos competition)
- Physical modelling
- Statistical models, AI, Data mining,...
- Combination of models
- First probabilistic approaches/ensembles
- Upscaling
- Evaluation standardisation/protocol
- International collaboration

1990

THE STATE OF THE ART

"Deterministic" (spot) approaches

New generation of tools

Diversified predicted information

Portfolio of products

1990

2002 Anemos

2008 SafeWind, Anemos.plus

26

ParisTech

Perspectives

THE STATE OF THE ART

"Deterministic" (spot) approaches

New generation of tools

1990

2002 Anemos

2008 SafeWind, Anemos.plus

Probabilistic view

On going research

2015

Perspectives

MINES ParisTech 29

Développent of an "intelligent" layer

able to use the most relevant information and prediction products in a situation-dependent way, for optimising decision making under uncertainty in different applications

Developments on PV forecasting

• The Nice Grid demonstrator : Location & key figures

NICE GRID

10 500 Inhabitants in Carros

2,5 MWp Solar PV capacity

30 M€

Overall budget

11

Companies involved in peak reduction 2 300 Smart meters Linky

1 300 kW Storage power

3,5 MW Peak demand reduction

8

Public lightning sites involved

VICE GRID Overview of the demonstrator

• 4 OBJECTIVES

- Increase MV/LV PV integration thanks to a "Network Energy Manager"
- Study and model small customer response
- Operate an LV microgrid on an Islanding mode
- Study the business model

• 4 USE CASES

- Optimize massive PV integration in the distribution grid
- Test islanding within a low voltage area
- Test 3,5 MW load shedding within the area city of Carros
- Incentivize prosumer behavior

VICE GRID Overview of the demonstrator

- Energy management:
 - o A combination of "centralised" and "decentralised" decision making.
 - A "centralised" approach based on a "local market" principle for flexibilities is implemented for the DSO (NEM-Network Energy Manager)
 - o Actors like aggregators take decisions locally and interact with the NEM

NICE GRID The « intelligence » layer

- Objective:
 - Generate probabilistic forecasts of the power production of all PV installations (on roofs and grid connected).

- Results:
 - Advanced statistical methods were developped and implemented into an operational module running at ERDF's production environment

ParisTech

- Objective:
 - Generate probabilistic forecasts of the power production of all PV installations (on roofs and grid connected).

- Results:
 - Advanced statistical methods were developped and implemented into an operational module running at ERDF's production environment

MINES ParisTech

• Integration of forecasts in the NEM:

Conclusions

- Evolution to a more and more weather-dependent power system
- □ Continuous R&D effort needed to improve RES predictability.
 - R&D on probabilistic power system management tools required.
- RES forecasting is identified as a research priority within different research agendas (TPWind, Smartgrids, ENTSOE, IEA, EERA, ADEME, a.o.)
- Carrying out this research at EU level has proven a major driver for developing European leadership and excellence in the field.

Merci pour votre attention

41

Short-term wind power forecasting

Coordination of 3 major EU projects (2002-2012)

www.safewind.eu

Short-term wind power forecasting

Coordination of 3 major EU projects (2002-2012)

ParisTech