

Breaking the paradigm of Machine to Machine Connectivity

Cooking Recipe for a successful M2M

deployment

Hardware

(Modem, module, ultra-termina devices,...)

- Cost effective
- Interoperable
- Robust
- Energy efficiency
- Smart wake-up triggers
- Disseminated intelligent (firmware)
- Efficient module + SIM logistics
- Technology continuity in time

Connectivity

- Cost effective
- Resilient
- Coverage
- Interoperable
- Global (worldwide footprint)
- Enhanced coverage (rural & deep indoor)
- Efficient SIM + module logistics
- Technology continuity

Application platform

- Cost effective
- Big Data agile and efficient
- User friendly
- Network and module IT hooks
- Multi-tenant
- Good user experience
- Security / data integrity

Wireless Public network / wireless Private network / fixed access /...

Network type	Weaknesses	Strength
Private radio network PMR, Tetra, Sigfox,	Cost and variety of hardware ecosystemSession basedOften unlicensed spectrum	- Close to E2E system design
Public radio network 3GPP (GSM, 3G, LTE)	Session basedVariable coverage	 Cost and variety of hardware ecosystem Network resilience Worldwide interop 3GPP & SIM authent + encryption
Fixed Access DSL, ISDN, PSTN, PLC,	- Physical link fragility	Always onDeep indoor reach
+ ultra terminal access: RFID, Zigbee, 6LoWPAN, WiFi,	•••	

Always On vs Session based; session / idle management IPV4, IPV6 ... public addressing ... DHCP ... complex issues Carrier grade voice in some cases Spectrum interoperability across countries

Challenges of the traditional offering Customer pain points...

Devices suffer white and grey zones from mobile operators and data availability

Hectic Coverage & QoS

Lack on visibility on 2G / 3G continuity

Long term risk

Pricing & flexibility

Lack of tariff flexibility for M2M connectivity + International roaming, bundle offers, ...

Poor Extranet and back end IS

Lack of control over fleet and devices life cycle

Lack of connectivity hooks for smart IS

+ embedded SIM challenges

Embedded soldered SIM = M2M catalyst ... yet need for multi operator proposition

- ✓ Miniaturization
- ✓ Reliability
- ✓ Manufacturing Process
- **√** Logistics
- ▼ Fraud Avoidance
- ✓ Design Integration

Intimacy with MNOs

- Coverage
- Roaming
- Pricing
- Features
- Quality of Service, SLA
- Long-term evolution

The Solution – M2M enablement

MobiquiThings
Full MVNO
assets and
multi-operator
multi-network

M2M verticals:

- Logistics
- Security
- Transport
- Healthcare
- Utilities
- Buildings
- Advertising
- . . .

"Become the referent Machine to Machine Service Provider across the world"

Value Proposition – Dynamic Network Attachment

M2M focused proposition

Always best connected:

Maximized radio coverage Best in class QoS and service availability across geographies

Technology Continuity:

Multi operator connectivity enable to mitigate the 2G / 3G extinction perspectives risks

Business Accelerator through

Optimized connectivity TCO

inside country and across borders +
revenue catalyst

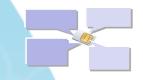
Services Oriented Information System:

M2M enabling services with Smart Connectivity integrated into Customer IT (Network & IS APIs, Web Services, ...)

One Stop Shop service supplier to address efficiently large M2M fleets worldwide

Smart SIM - Smart Steering on-SIM applet

Dynamic Network Attachment: make sure the SIM attaches dynamically to the best giving network according to the business/ operational logic of the object


	Signal strength	A
3G+ GSM/EDGE	Services availability	В
	Signal Stability	С
A Martin	Latency	D
SLOW	Data throughput	Ε
	Optimized traffic cost	F

Visited Network arbitration rule = weighting of use case specific QoS criteria.

$$P=A\alpha+B\beta+C\gamma+D\delta+E\epsilon+F\zeta$$

Multi-operator "Smart Steering" Quality of Service differentiation

Optimized Radio coverage and Quality of Service across geographies

Always best connected

Sable-sur-sarthe vendome ORLÉANS Amily Saint-Rioreftiri Bour ORLÉANS Amily Saint-Rioreftiri ORLÉANS Amily Saint-Rioreftiri ORLÉANS Amily Saint-Rioreftiri Montbard Dole Saint-Rioreftiri Montbard Saint-Rioreftiri Montbard Saint-Rioreftiri Montbard Dole Saint-Rioreftiri Montbard Saint-Rioreftiri Montbard Dole Saint-Rioreftiri Montbard

Networks

White / grey zones: Sub-Urban and rural areas

Reduces Technology risks by agile and dynamic switching according to device fleet operation logic A

White/ grey spots in Urban Canyons

Cost savings and operation/logistics simplification for our customers - One global SIM

Production

Shipment/

Usage /

logistics

Cross boarder usage

Scattered prod. sites

Conclusion

- Network & telecom solutions need to be tailored to M2M needs - Global, multi-op smart SIM...
- Information System building blocks (front end, back end, network and IS APIs are key for ecosystem efficiency and cost effectiveness (including it's operation)
- Complementarity of numerous connectivity solution. Sweat spots are not always where expected

