Optimal Contracting under Moral Hazard

Nizar Touzi

Ecole Polytechnique, France

Joint work with Jaksa Cvitanić, Dylan Possamaï,

René Aïd, Zhenjie Ren

Thomas Ozello

October 12, 2016

Market interactions

Transactions between agents are motivated by exchanging risks:

- different expositions to risk
- different appetite for risk
- different hedging purposes

Jean Tirole: interactions, including Industrial organization, are dictated by incentives

Goal : simple modeling for market interactions in the context of delegation

Risk Sharing

Principal draws utility from output :

$$X^{a} := a + N$$
 for some r.v. $N \sim \mathcal{N}(a, \sigma), \sigma > 0$ given

- Management of ouput delegated to Agent :
 - receives the random amount ξ : the contract
 - devotes effort a inducing $X^a \sim \mathcal{N}(a, \sigma)$
 - cost of effort c(a)
- Principal chooses contract and effort :

$$\max_{\xi,a} \mathbb{E}\big[U_P(X^a - \xi)\big] + \lambda \mathbb{E}\big[U_A(\xi - c(a))\big]$$

i.e. maximization of joint welfare by social planner (Pareto optimal)

Borch Rule for Risk-Sharing

• First order condition in $\xi \Longrightarrow$ Borch rule :

$$\frac{U_P'(X^{\hat{a}} - \hat{\xi})}{U_A'(\hat{\xi} - c(\hat{a}))} = \lambda$$

• First order condition in a \Longrightarrow

$$c'(\hat{\mathbf{a}}) = \frac{U'_P(X^{\hat{\mathbf{a}}} - \hat{\xi})}{\lambda U'_A(\hat{\xi} - c(\hat{\mathbf{a}}))} = 1$$

Typically, $c: \mathbb{R}_+ \longrightarrow \mathbb{R}$ increasing, strictly convex,

Optimal effort :
$$\hat{a} := (c')^{-1}(1)$$

Risk-Sharing under exponential utilities

Let
$$U_A(x):=-rac{1}{\gamma_A}e^{-\gamma_A x}$$
 and $U_P(x):=-rac{1}{\gamma_P}e^{-\gamma_P x}$

Then, Borch rule reduces to:

$$\hat{\xi} := \frac{\gamma_P}{\gamma_A + \gamma_P} X + \frac{\gamma_A c((c')^{-1}(1)) + \log \lambda}{\gamma_A + \gamma_P}$$

i.e. optimal contract = constant payment + proportion of output

Does not reflect reality in market interactions:

- Agent devotes constant effort!
- Contract proportional to output, regardless of risk!

Moral hazard

• Adam Smith (1723-1790) identified moral hazard as a major risk in economics :

Situation where an agent may benefit from an action whose cost is supported by others

Should not count on agents' morality...

Principal-Agent Problem

Principal does not observe Agent's effort, then contract

$$\xi = \xi(X^a)$$

Agent determines optimal effort by

$$V_A(\xi) := \max_{\mathbf{a}} \mathbb{E} U_A(\xi(X^{\mathbf{a}}) - c(\mathbf{a})) \implies \hat{a}(\xi)$$

Principal chooses optimal contract by solving

$$\max_{\xi} \mathbb{E} U_P \big(X^{\hat{a}(\xi)} - \xi(X^{\hat{a}(\xi)}) \big) \quad \text{under constraint} \quad V_A(\xi) \ge R$$

Non-zero sum Stackelberg game

Difficult to solve, and so restrict to affine contracts...

Affine contract under exponential utilities and quadratic cost

Let $c(a) := \frac{1}{2}c_0a^2$, and find the best contract of the form

$$\xi(x) = k_0 + k_1 x$$

• From the agent's problem, we directly compute that

$$\hat{a}(\xi) = \frac{k_1}{c_0}$$

ullet Saturating the constrain in the Principal problem $V_A(\xi)=R$ leads to

$$k_0 = \frac{k_1^2}{2} \left(\gamma_A \sigma^2 - \frac{1}{2c_0} \right) - \frac{\log R}{\gamma_A}$$

 \implies Principal's problem reduces to maximization over $k_1...$

$$\hat{k}_1 = \frac{\frac{1}{c_0 \sigma^2} + \gamma_P}{\frac{1}{c_0 \sigma^2} + \gamma_P + \gamma_A}$$

Comments on Second Best

- Difficult to solve in the present one-period setting!
- Restriction to affine contracts :

how good is this class?

In particular, we may be pushing Agent to take more risk!

Our Main Objective

This problem is more accessible in continuous time

Started by Holmström & Milgrom 1985...

Nobel Prize 2016 winners: Oliver Hart and Bengt Holmström

Holmström & Milgrom 1985

Output process with effort α :

$$dX^{\alpha_t} = \alpha_t dt + \sigma dW_t$$

Agent solves

$$\max_{\alpha} \mathbb{E} \Big[\xi(X^{\alpha}) - \frac{1}{2} c_0 \int_0^T |\alpha_t|^2 dt \Big] \implies \hat{\alpha}(\xi)$$

Principal solves

$$\max_{\xi} \mathbb{E}\Big[U_P(X^{\hat{\alpha}(\xi)}_T - \xi(X^{\hat{\alpha}(\xi)}))\Big]$$

• Non-zero sum stochastic differential game

Moral hazard: financial regulation

⇒ Remedy : regulation, compensation indexed by risks

Fund managers compensation under moral hazard

Fund managers portfolio value for effort $\nu = (\alpha, \pi)$

$$dX^{\nu}_{t} = \pi_{t} \cdot (\alpha_{t}dt + dW_{t})$$

Manager's problem

$$\sup_{\nu=(\alpha,\pi)} \mathbb{E}\left[\xi - \int_0^T \left(c_0 \alpha_t^2 - c_1 |\pi_t|^2\right) dt\right] \implies \hat{\nu}(\xi)$$

Principal problem:

$$\sup_{\xi(.)} \mathbb{E} \left[U \left(X^{\hat{\nu}(\xi)}_{T} - \xi \left(X^{\hat{\nu}(\xi)} \right) \right) \right]$$

Quadratic variation and riskiness of fund management

- X_t is the value of the fund at time t
- Principal only observe the relized gains $\{X_t(\omega), t \in [0, T]\}$, and has no access to the distribution of X
- Quadratic variation, also called realized variance :

$$\langle X \rangle_t := \lim_{\Delta t \searrow 0} \sum_{t_i < t} \left| X_{t_i} - X_{t_{i-1}} \right|^2$$

measures the risk induced by the fund manager

Optimal fund manager compensation

Our main result characterizes the optimal contract as

$$\hat{\xi} = \int_0^T \hat{\mathbf{Z}}_t \cdot d\mathbf{X}_t + \frac{1}{2} \hat{\mathbf{\Gamma}}_t : d\langle \mathbf{X} \rangle_t - H(\hat{\mathbf{Z}}_t, \hat{\mathbf{\Gamma}}_t) dt$$

where $\langle X \rangle$ is the quadratic variation of the output X

$$H(z,\gamma) := \sup_{\pi,\alpha} \left\{ \pi \cdot \alpha z + \frac{1}{2} |\pi|^2 \gamma - c_0 |\alpha|^2 - c_1 |\pi|^2 \right\}$$

and \hat{Z} , $\hat{\Gamma}$ are determined by means of a HJB equation...

Moral hazard: electricity tarification

Electricity generation by solar / windfall technologies is volatile

⇒ Although consumers demand is quite predictable, adjustment of electricity demand by classical generation means inherits important variability

Path-dependent tarification

Volatility of consumption

Total consumption of X = Total consumption of X

$$\langle X \rangle = 1^2 + \dots + 1^2 = 12$$
 $\langle X \rangle = 12^2 + 11^2 + \dots + 1^2 = 650$

Electricity tarification under moral hazard

Electric power demand in excess to a predictable reference pattern :

$$dX^{\nu}_{t} = -\alpha_{t}dt + \sigma \beta_{t}dW_{t}, \quad \alpha_{t} \geq 0, \quad \beta_{t} \in (0, 1]$$

Consumer problem

$$\sup_{\nu=(\alpha,\beta)} \mathbb{E}\Big[-\xi + \int_0^T \big(u(X^{\nu}_t) - c(\nu_t)\big)dt\Big] \implies \hat{\nu}(\xi)$$

$$u(x) := -e^{-\eta x}$$
 and $c(a,b) := c_0 a^2 + c_1 b^{-2}$

Producer problem:

$$\sup_{\xi(.)} \mathbb{E}\Big[\xi(X^{\hat{\nu}(\xi)}) + \int_0^T \pi(X^{\hat{\nu}(\xi)}_t) dt - q\langle X^{\hat{\nu}(\xi)}\rangle_t\Big]$$

Optimal tarification

Our main result characterizes the optimal tarification as

$$\hat{\xi} = \int_0^T \hat{\mathbf{Z}}_t \cdot d\mathbf{X}_t + \frac{1}{2} \hat{\mathbf{\Gamma}}_t : d\langle \mathbf{X} \rangle_t - H(\hat{\mathbf{Z}}_t, \hat{\mathbf{\Gamma}}_t) dt$$

where $\langle X \rangle$ is the quadratic variation of the output X

$$H(z,\gamma) := \sup_{\alpha,\beta} \left\{ -\alpha z + \frac{1}{2}\sigma^2 \beta^2 \gamma - c_0 |\alpha|^2 - c_1 |\beta|^{-2}
ight\}$$

and \hat{Z} , $\hat{\Gamma}$ are determined by means of a HJB equation...

Empirical results

Approximate contract

Recall

$$\hat{\xi} = \int_0^T \hat{\mathbf{Z}}_t \cdot d\mathbf{X}_t + \frac{1}{2} \hat{\mathbf{\Gamma}}_t : d\langle \mathbf{X} \rangle_t - H(\hat{\mathbf{Z}}_t, \hat{\mathbf{\Gamma}}_t) dt$$

 \Longrightarrow Simulate N paths of X, and compute the corresponding $\hat{\xi}$'s

- \Longrightarrow Regression of $\hat{\xi}$
 - on X_T
 - on (X_T, X_T^2)
 - on $(X_T, X_T^2, X_{T/2}, X_{T/2}^2)$ $\implies R^2 \sim .95\%$

Principal-Agent problem : general formulation

Agent solves the control problem :

$$V_0^A(\xi) := \sup_{
u=(lpha,eta)} \mathbb{E} \Big[K_T \xi - \int_0^T K_t c_t(
u_t) dt \Big]$$

where $K_t = e^{-\int_0^t k_s^{\nu} ds}$ and Output process :

$$dX = \sigma_t(X, \beta_t) [\lambda_t(X, \alpha_t) dt + dW_t]$$

Principal solves the optimization problem

$$V_0^P := \sup_{\xi \in \Xi_R} \mathbb{E} \Big[K_T^{
u^*} U(\ell(X^{
u^*}) - \xi(X^{
u^*})) \Big]$$

where $\Xi_R : \xi(X)$, such that $V_0^A(\xi) \geq R$

Path-dependent Hamiltonian

• Path-dependent Hamiltonian for the Agent problem :

$$\begin{array}{ll} H_t(,y,z,\gamma) &:=& \sup_{a,b} \left\{ \sigma_t(,a) \lambda_t(,b) \cdot z + \frac{1}{2} \sigma_t \sigma_t^\top(,a) : \gamma \right. \\ &\left. - k_t(,a,b) y - c_t(,a,b) \right\} \end{array}$$

• For $Y_0 \in \mathbb{R}$ and $Z, \Gamma \mathbb{F}^X$ — prog meas, define

$$dX_t = \nabla_z H_t(X, Y_t^{Z, \Gamma}, Z_t, \Gamma_t) dt + \left\{ 2\nabla_\gamma H_t(X, Y_t^{Z, \Gamma}, Z_t, \Gamma_t) \right\}^{\frac{1}{2}} dW_t$$
$$dY_t^{Z, \Gamma} = Z_t \cdot dX_t + \frac{1}{2} \Gamma_t : d\langle X \rangle_t - H_t(X, Y_t^{Z, \Gamma}, Z_t, \Gamma_t) dt$$

$$V_0(X_0, Y_0) := \sup_{\mathbf{Z}, \Gamma} \mathbb{E}\Big[U(\ell(\mathbf{X}) - Y_T^{\mathbf{Z}, \Gamma})\Big]$$

Main result

$\mathsf{Theorem}$

We have

$$V_0^P = \sup_{Y_0 \ge R} V_0(X_0, Y_0)$$

Given maximizer Y_0^* , the corresponding optimal controls (Z^*, Γ^*) induce an optimal contract

$$\boldsymbol{\xi^{\star}} = \boldsymbol{Y}_{T}^{\boldsymbol{Z^{\star}},\boldsymbol{\Gamma^{\star}}} = \boldsymbol{Y_{0}^{\star}} + \boldsymbol{Z_{t}^{\star}} \cdot d\boldsymbol{X}_{t} + \frac{1}{2}\boldsymbol{\Gamma_{t}^{\star}} : d\langle \boldsymbol{X} \rangle_{t} - \boldsymbol{H_{t}}(\boldsymbol{X},\boldsymbol{Y}_{t}^{\boldsymbol{Z^{\star}},\boldsymbol{\Gamma^{\star}}},\boldsymbol{Z_{t}^{\star}},\boldsymbol{\Gamma_{t}^{\star}})dt$$

On the function V

$$\begin{split} \bar{X} &:= (X,Y) \text{ satisfies } d\bar{X}_t = \bar{\mu}(\bar{X}_t,Z_t,\Gamma_t)dt + \bar{\sigma}(\bar{X}_t,Z_t,\Gamma_t)dW_t : \\ dX_t &= \nabla_Z H_t(X,Y_t^{Z,\Gamma},Z_t,\Gamma_t)dt + \left\{2\nabla_\gamma H_t(X,Y_t^{Z,\Gamma},Z_t,\Gamma_t)\right\}^{\frac{1}{2}}dW_t \\ dY_t^{Z,\Gamma} &= Z_t \cdot dX_t + \frac{1}{2}\Gamma_t : d\langle X \rangle_t - H_t(X,Y_t^{Z,\Gamma},Z_t,\Gamma_t)dt \end{split}$$

and recall
$$V_0(\bar{X}_0) := \sup_{Z,\Gamma} \mathbb{E}\Big[U(\ell(X_T) - Y_T^{Z,\Gamma})\Big]$$

 $V_0(\bar{X}_0) = V(0, \bar{X}_0)$; V solution of Hamilton-Jacobi-Bellman eq.

$$\begin{array}{ll} \partial_t V_0 + \sup_{z,\gamma} \left\{ \bar{\mu}(.,z,\gamma) D V_0 + \frac{1}{2} \overline{\sigma} \overline{\sigma}^\top (.,z,\gamma) : D^2 V_0 \right] \right\} &= 0 \\ V_0(T,x,y) &= U(\ell(x)-y) \end{array}$$

Extensions

- Limited liability : add state constraint $Y \ge 0$
- Optimal contract termination (by Agent and/or Principal) : add optimal stopping
- Infinite horizon
- Heterogeneous agents
- Mean field interaction between agents

