Parallel Computation & Genomic

Dominique LAVENIER Irisa / Inria – Rennes GenScale team leader

Agenda

- Genomic data
- Applications
- Bioinformatics treatments
- Parallel implementation

Genomic data

- DNA, RNA, (protein) sequences
- High throughput sequencing machine

Historical trends in storage prices versus DNA sequencing costs (from Stein, L.D., Genome Biology 2010, 11:207)

SRA database growth

Cost per raw megabase of DNA sequence

Genome sequencing cost as estimated by NHGRI (September 2001 to April 2014)

(bio)Technological breakthrough

10 years ago

- Nearly sequential sequencing
- A few DNA fragments sequenced simultaneously (~10-100)
- DNA fragment size: 500 1000 bp
- Low error rate

Today

- Massive parallel sequencing
- Billions of DNA fragments sequenced simultaneously
- DNA fragment size: 36bp 150bp 300bp
- Very low error rate
- $-1 \text{ run} \rightarrow 0.1 \text{ to } 1 \text{ TBytes}$

Tomorrow

- 10⁶-10⁸ long/very long DNA fragments: 10 → 100 Kbp
- very chip sequencing
- High error rate

Applications (1)

- Biomedical
 - Drug design
 - Genomic disease
 - Personalized medicine
 - Diagnostic
 - example : cancer
 - Target sequencing (exome)
 - Detection of mutations in a set of predefined genes
 - Goal : match drug and gene mutation

- ...

Applications (2)

- Agronomy, Environment
 - Animal selection
 - Plant improvement
 - Diversity studies
 - **-** ...

Metagenomic

Simultaneous sequencing of all organisms of the same environment

TARA Oceans Project

Study of ocean streams

Analysis of 21 samples

1 sample = 10^8 reads

Upwelling

Cold and deep water streams rise to the surface

Bioinformatics treatments

Usage network for software name resource pairs, mentioned within the methods section only.

Duck G et al. Bioinformatics 2014;30:i601-i608

Sequence comparison

- Declined in many ways:
 - Pairwise alignment
 - Multiple alignment
 - HMM search
 - Mapping
 - Detection of motif

Sequence comparison

Alignment computation

- Highly parallel process
 - N sequences vs M sequences
 - → NxM elementary comparisons
 - → independent processes

Doesn't require floating point computation power

- Limits
 - Number of elementary comparisons to process

Example: Comparative Metagenomic

TARA Oceans Project

Tara Oceans Project

 10^3 - 10^4 species

Process of 3 only stations = 4 000 000 CPU hours

How to speed-up these computations?

- Software improvement
 - New sequence comparison algorithms
 - Specialization of applications
 - Data structures
- Dedicated hardware accelerator
 - ASIC, FPGA → parallel architectures
- Parallelism
 - Consider all levels of parallelism
 - SIMD → SSE instruction, GPU
 - Multi-threading → multi-core, many-core
 - Distributed computing → Cluster / cloud

Custom Hardware Accelerators

- ASIC / FPGA
- Fine grained parallelization (algorithm level)
- Advantage
 - Significant speed-up
 - Low consumption
- Drawback:
 - Market niche → expensive
 - BLAST-like heuristic has not been yet efficiently parallelized at the algorithm level
 - I/O bottleneck (?)

GPU

- Many bioinformatics algorithm have been implemented on GPU
- Modest speed-up (X2- X5) due to:
 - Data bandwidth, limited memory
 - SIMD programing restriction
 - Floating point capacity not used
 - No regular memory access
- Exception for some treatments
 - Computation requiring statistical analysis
 - Structural bioinformatics

Comparison with optimized multithreaded implementation

8-core processor use of SSE instructions

I/O << computations

Multicores

Efficient implementation by combining SSE instructions and multi-threading

- Algorithms does not scale well with the increase of processors
 - Many irregular accesses to the share memory
 - →bad news for many-core architectures !!
 - Most current bioinformatics software support a multi-threaded implementation

Clusters

Data parallelism

 Time consuming bioinformatics processes based on sequence comparison can be easily parallelized

- Limitation:
 - Reorder large set of data
 - Data access to storage devices
 - Network bandwidth is often the bottleneck

Conclusion

- More and more genomic data
- Bioinformatics treatment features
 - Dominated by data
 - Large volume of data
 - Low computation complexity
 - I/O and memory data access is often the bottleneck
 - No floating point computation
- Parallelism
 - Multi-core (SSE + multi-threading)
 - Scaling to many-core won't be straightforward
 - Cluster
 - Need infrastructure (network, device storage) adapted to handle large data flow