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Introduction: context of performance analysis 

Hardware architectures are becoming increasingly complex 
• Complex CPU: out of order, vector instructions 
• Complex memory systems: multiple levels including NUMA, 

prefetch mechanisms 
• Multicore introduces new specific problems, shared/private caches, 

contention, coherency 
• Software stack is also becoming more and more complex 

Each of these hardware mechanisms introduce performance 
improvement but to work properly, they require specific code 

properties 
Performance pathologies: situations potentially inducing performance 
loss: hardware poor utilization 
Individual performance pathologies are numerous but finite 
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Introduction: usual performance pathologies (1) 

4 

Pathologies Issues Work-around 

ADD/MUL 
balance 

ADD/MUL parallel execution 
(of FMA) underused 

Loop fusion, code rewriting e.g. 
Use distributivity 

Non pipelined 
execution 
units 

Presence of non pipelined 
instructions: DIV, SQRT 

Loop hoisting, rewriting code 
to use other instructions eg. 
x86: div and sqrt 

Vectorization 

Unvectorized loop Use another compiler, check 
option driving vectorization, 
use pragmas to help compiler, 
manual source rewriting 

Complex CFG 
in innermost 
loops 

Prevents vectorization 
Loop hoisting or code 
specialization 



Introduction: usual performance pathologies (2) 
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Pathologies Issues Work-around 

Unaligned 
memory 
access 

Presence of vector-unaligned 
load/store instructions 

Data padding, use pragma 
and/or attributes to force the 
compiler 

Bad spatial 
locality and/or 
non stride 1 

Loss of bandwidth and cache 
space 

Rearrange data structures or 
loop interchange 

Bad temporal 
locality 

Loss of perf. due to avoidable 
capacity misses 

Loop blocking or data 
restructuring 

4K aliasing 
Unneeded serialization of 
memory accesses 

Adding offset during 
allocation, data padding 

Associativity 
conflict 

Loss of performance due to 
avoidable conflict misses 

Loop distribution, rearrange 
data structures 



Introduction: usual performance pathologies (3) 
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Pathologies Issues Work-around 

False sharing 
Loss of BW due to coherence 
traffic and higher latency access 

Data padding or rearrange data 
structures 

Cache 
leaking 

Loss of BW and cache space 
due to poor physical-virtual 
mapping 

Use bigger pages, blocking 

Load 
unbalance 

Loss of parallel perf. due to 
waiting nodes 

Balance work among threads or 
remove unnecessary lock 

Bad affinity 
Loss of parallel perf. due to 
conflict for shared resources 

Use numactl to pin threads on 
physical CPUs 



Introduction: Analysis of current tool set 1/3 

• Lack of global and accurate view: no indication of 
performance loss (or alternatively ROI) 
– Performance pathologies in general but no hint provided on 

performance impact (cf VTUNE with performance events): we 
do not know the pay off if a given pathology is corrected 

– Worse, the lack of global view can lead you to useless 
optimization: for example, for a loop nest exhibiting a high miss 
rate combined with div/sqrt operations, it might be useless to 
fix the miss rate if the dominating bottleneck is FP operations.  

– Source code correlation is not very accurate: for example with 
VTUNE relying on sampling, some correlation might be exhibited 
but it is subject to sampling quality and out of order behavior. 
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Introduction: Analysis of current tool set 2/3 

• Very often, most of the tools rely on a single 
technique/approach (simplified view but globally 
correct) 
– Vtune is heavily relying on sampling and hardware 

events 

– Scalasca/Vampir/Tau is heavily relying on tracing and 
source code probe insertion 

– Sampling aggregates everything together (all 
instances): might be counterproductive 

– In practice, flexibility has to be offered: tracing might 
be more efficient than sampling and vice versa. 
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Introduction: Analysis of current tool set 3/3 

• A common pitfall: “Hardware events/counters can 
explain everything”  
– Counting the number of cache misses is useless unless you 

know the average cost of a cache miss which can vary from   
5 cycles (near hit) up to 200 cycles (ineffective prefetching, 
access all the way to DRAM) 

– High values for counters: Reservation Station (ROB) buffers 
full. Is it good or bad ?? It just shows that input rate is 
larger than output  rate. Everything depends upon these 
rate values.  

– Counters hard to correlate with source code 
– Counters change from one processor generation to the 

next: not only names but sometimes semantics. 
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Introduction: (usual performance pathologies) 

• Well known 

• But: 

– How to find them ? 

– How much do they cost ? 

– What to do when multiple pathologies are present ? 

• Need to quantify/hierarchize them 
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Our Objectives: Techniques & Modeling 

• Get a global hierarchical view of performance 
pathologies/bottleneck 

• Estimate the performance impact of a given 
performance pathology  while taking into account 
all of the other pathologies present 

• Use different tools for pathology detection and 
pathology analysis 

• Perform a hierarchical exploration of bottlenecks: 
the more precise but expensive tools are only used 
on a specific well chosen cases 
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Motivation: Example (1) 
POLARIS(MD) Loop 
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Example of multi scale problem: 
Factor Xa, involved in thrombosis 

Anti-Coagulant 

(7.46 nm)3 



Motivation: Example (2) 
Source code and issues 
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6) Vector vs scalar 

2) Non-unit stride accesses 

4) DIV/SQRT 

5) Reductions 

Special issues: 

Low trip count: from 2 to 

2186 at binary level 

3) Indirect accesses 

Can I detect all these issues with current tools ? 
Can I know potential speedup by optimizing them ? 

1) High number of 

 statements 



Tools: CQA 

• CQA = Code Quality Analyzer 
• Objectives (provides): 

– Best performance estimation (assuming data in L1) 
– Code quality information (and optimization hints for 

compiler flags and source transformations) 
– First estimation of bottlenecks hierarchy 

• Statically analyzes innermost loops binaries: builds 
DDG 

• Supports Intel 64 micro-architectures from Core 2 to 
Ivy Bridge (Haswell coming soon) 

• Provides metrics and reports at both low and high 
abstraction levels 
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Tools: Differential Analysis 

• A key technique in our approach: Differential Analysis 
(DECAN):  

• Original Binary (B): I1, I2, I3, I4 (let us assume I2 is a 
load Instruction accessing an unknown cache level) 

• Patched Binary (B’): I1, I’2, I3, I4 (I2 has been replaced 
by I’2: forcing L1 access) 

• Perf(B) – Perf(B’) = Marginal Cost of original I2 data 
access  

• Differential analysis allows: 
1. To detect/isolate costly sequence of instructions 
2. To estimate accurately their impact on global 

performance 
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Tools: Diff. Analysis (2/3, transformations) 
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      FP       LS         
  

          Ref        
  



Best Estimated: CQA results 

REF: Original code FP: only FP operations are kept LS only Load Store 

instructions are kept. 

FP / LS = 4,1: FP is by far the major bottleneck 

Case study: Original code: Dynamic properties (2) 
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 FP / LS = 2,07     -    Initial  value was at  4,1 

 

Case study: Dynamic properties after 

vectorization: using SIMD directive 

18 

0

5

10

15

20

25

30

35

40

45

50

Best_estimated REF FP LS

C
yc

le
s 

p
e

r 
so

u
rc

e
 it

e
ra

ti
o

n
s 

Variants 

Execution time 

Execution time



Case study: one step further 

 

 

REF_NSD   : removing DIV/SQRT instructions provides a 2x speedup  

          => the bottleneck is the presence of these DIV/SQRT instructions 

FPLS_NSD : removing loads/stores after DIV/SQRT provides a small additional speedup 

Conclusion: No room left for improvement here (algorithm bound) 

 

DIV/SQRT 

instructions 

removed 

Loads/stores + 

DIV/SQRT instructions 

removed 
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Tools 

• MAQAO (Modular Assembly Quality Analyzer and 
Optimizer) 

– Operates on ELF64 binary files (Linux x86_64 
supported) 

– Static (CQA) and dynamic (Diff. Anal. + MTL) analysis 

• Differential Analysis 

– Uses MAQAO (for disassembling, patching…) 

– Measures performance impact of some instructions in 
loop bodies 
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Tools: MicroTools: Microbenchmarking 

• An automatic solution for microbenchmarks 
generation in an easy and reusable way 

 

• Measuring the machine’s workload per piece 
of code 

 

• Useful for getting an idea of potential 
performance impact of different pathologies. 
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Methodology 
(basic benchmarking) 

• Evaluate ideal bandwidth for load instructions 

• Best monocore results among various stream 
experiments 

– With or without prefetch instructions 

– With or without splitting streams 
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Bytes per Cycle 

~= 



Methodology 
(Main steps) 

1) Basic bandwidth benchmarks (once per architecture) 

2) Keep loops up to 80% execution time (sampling) 

3) Trace iterations count for each instance 

4) Check for short loop trip count 

5) Run differential analysis to qualify/quantify bottlenecks 
(assess if CPU or memory bound…) 

6) Run static analysis 

7) Investigate CPU or memory bound issues 
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Real Application Behavior: MAQAO Perf on Yales2 (CORIA)  

HAND TOOLS 



Analysis on Yales 2 (1) 

5 – Clustering Approach 

 First step 

Ongoing work 

10 static metrics provided by CQA 

Innermost 

 Yales 2 3D cylinder 0110: 20 clusters 

 Cluster A (12 codelets): AXPY 

 

 

 Cluster B (29 codelets): AXPY and accumulation 

 Cluster C (15 codelets): Array copy 

 Cluster D (8 codelets): Codelets with good vectorization 

 Other clusters… 

 

grad_ptr%int_comm_r3%val(1:grid%ndim,j,inoi) =  grad_ptr%int_comm_r3%val(1:grid%ndim,j,inoi)  +                
      
 scal_val_r1%val(j)*normal(1:grid%ndim) 

04/28/14 – Franck Talbart, Mathieu Bordet, Nicolas Petit 



Analysis on Yales 2 (2) 

5 – Clustering Approach 

Cluster 1 
14 codelets – Coverage: 2,13% 

AXPY 

Cluster 2 
10 codelets – Coverage: 3,8% 

AXPY + Accum 

Cluster 4 
2 codelets – Coverage: 1,19% 

Behaviour 
ics_advance_velocity_tfv4a_4th 

Cluster 5 
33 codelets – Coverage: 8,33% 

low byte stored/cycle 
High P1 

Cluster 18 
9 codelets – Coverage: 1,40% 

High byte stored/cycle 
Low P1 

Cluster 9 
12 codelets – Coverage: 1,03% 

Best array copy efficiency Cluster 12 
18 codelets – Coverage: 7,97% 

IPC > 3,5 

Array copy 

04/28/14 – Franck Talbart, Mathieu Bordet, Nicolas Petit 



Analysis on Yales 2 (3) 

5 – Clustering Approach 

04/28/14 – Franck Talbart, Mathieu Bordet, Nicolas Petit 



Vectorization Analysis 

Vectorization: 2 levels 

 Fully vectorized 

 All the uops/instructions are considered as vectorized 

 FP arith 

 Uops related to float computation only are considered as 

vectorized (no load / store, no address computation) 

 

 



2- Major Results: Potential Impact of Vectorization on Yales2 MS 1D Flame 



Conclusions and future works 

• Differential analysis provides first-order bottlenecks and related ROI 

• For CPU-bound loops, MAQAO CQA provides finer, per-issue ROI 

• Real Applications requires more sophisticated techniques to handle large 
number of loops 

• Performance analysis should cover code design choices for upcoming 
architectures 

• Future works 

– Refine memory bottleneck analysis 

– Fully automate the methodology 

– Scalability bottlenecks (OpenMP, MPI) ? 

– Cost notion: weighting ROI by code complexity 
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Methodology 
(hotspot identification) 

31 

• Identify hot loops using cycles sampling: 
– collect the set of hot loops which represent 80% of execution 

time 

• Identify the most significant loop calls using Loop Count 
Tracing 
– Constructs the deciles from the traces 
– Select a candidate loop call from each decile 

• Determine the global ROI of the loops  
– launch the LSIS and FPIS versions for the selected loop calls  
– Calculate for each loop:  

• ROIi = max(LSISi,FPISi)/min(LSISi,FPISi) , then:  
• G_ROIi = ROIi ∗ EXEC TIMEi 

• Order the loops list following the biggest score of G_ROI 
 



Methodology 
(sanity tree) 
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Methodology 
(main tree) 
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Methodology 
(CPU bound tree) 
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Methodology 
(memory bound tree) 
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Methodology 
(OpenMP tree) 

36 



Case study 2: RTM application 
 

• Seismic migration  

– Uses the Reverse Time Migration 

• Developed by TOTAL (French oil company)  

• Fortran, OMP, MPI, OMP+MPI 

 

 

 

Interior of the domain (inner) Borders of the domain (damping) 

Form of 
the 

Stencil 



Case study 2: RTM application 
(Methodology) 

 

The appliance of the methodology on the code 
reveals the following: 
• Good load balance: equitable work sharing in the 

stencil 

• Good ROI:  The chosen blocking strategy provides a 
reasonable gap between the LS and FP streams. The 
application is still memory bound  

• The last element to check is the possibility of 
presence of additional coherency traffic  => Enabled 
by the use of the S2L DECAN variant 

 

 

 

 

 

 

 

 



Case study 2: RTM application 
(Cache coherence ) 

 

Conclusion: Performance are the same => Cache line state change is well 
managed by the coherency mechanism 

    4 cores Sandy-Bridge   



 Open source (LGPL 3.0)  

 Currently binary release 

 Source release  

 Available for x86-64 and Xeon Phi 

 UVSQ member of VI-HPS consortium (www.vi-hps.org) 
 Audience 

 User/Tool developer: analysis and optimization tool 

 Performance tool developer: framework services 

 TAU: tau_rewrite (MIL) 

 ScoreP: on-going effort (MIL) interoperability with other tools: Scalasca, 
Vampir, BSC tools 

MAQAO 

www.maqao.org 



The Stage 

Hardware architectures are becoming increasingly complex 
• Complex CPU: out of order, vector instructions 

• Complex memory systems: multiple levels including NUMA, prefetch mechanisms 

• Multicore introduces new specific problems, shared/private caches, contention, coherency 

• Each of these hardware mechanisms introduce performance improvement but to work properly, 

they require specific code properties 

Performance pathologies: situations potentially inducing performance loss: hardware 

poor utilization 
• Individual performance pathologies are numerous but finite (they more or less relate to the 

various architectural features listed above. Non exhaustive of performance pathologies 

• Scalar versus vector 

• Short loop trip count 

• Recurrences 

• Poor spatial locality 

• Poor temporal locality 

• Load imbalance 

• Parallel loop overhead (Fork/join) 

• MPI issues: short messages, early sender/late receiver etc… 

• Most of them are well known and well identified 

 

 

 

 



A few major issues with performance pathologies 

Some performance pathologies might be quite complex to detect and analyze 
• Even for a simple loop nest, pathologies strongly depend upon loop bounds: for example, in 

general sweeping row wise through an array stored column wise leads to performance problems. 

However performance penalties can be radically different whether your array is tall (a few 

columns) versus fat (a large number of columns 

• Detection of pathologies can in general be done at the source level, in fact better at the binary 

level because the compiler can correct some.  However some evaluation can be tricky and complex 

to perform: temporal and spatial locality for example. 

• Exact performance impact of a given pathology is hard to evaluate and therefore, the return on 

investment of correcting is unknown: optimization process advances in the dark. 

• Several actors are involved in the performance impact of a performance pathology: algorithm, 

source code, compiler, OS/runtime and hardware 

A major problem with performance pathologies: even for simple loops, several of 

them might coexist and interact 
• Since individual pathologies are finite, their combination remain finite however, from a 

practical point of view, potential combinatoric explosion of the number of cases to be explored 

prevents the use of simple exhaustive search techniques 

• Interaction between pathologies can be quite complex 

 

 

 

 



Our objectives and approach 

OBJECTIVES 

• Get a global hierarchical view of performance pathologies/bottleneck 

• Get an estimate of performance impact of a given performance pathology taking 

into account all of the other pathologies present 

• Use different tools for pathology detection and pathology analysis 

• Perform a hierachical exploration of bottlenecks: the more precise but expensive 

tools are only used on a specific well chosen cases 

 

 

 



General View of our approach 

STEP0: offline, microbenchmarck the architecture to get an idea of 

potential performance impact of different pathologies 

STEP1: standard profiling to detect hot routines more precisely the ones 

contributing up to 80% of total execution time. 

STEP2: Value tracing: for all loops analyze loop iteration counts and for 

array access, array stride (performed via MIL) 

STEP3: static analysis via STAN. Assuming operands are in L1, detect and 

build bottleneck hierarchy 

STEP4: split performance problems between OpenMP issues, CPU issues 

and hierarchical memory issues (use of DECAN) 

STEP5: refine data access analysis: perform memory tracing with MTL and 

group analysis with DECAN 

 

 



Preliminary step: detecting structural issues 

Handling unrolling 

 Unrolling can create several binary loops per source loop 

 Related binary loops can be clusterized using STAN 

 

Analyzing clusters 

 Counting iterations for each binary loop using DECAN 

 Using DECAN variant DT1 RAT for the main loop 

 

General observations [may remove this part and transition to the ”Sanity” tree] 

 The main loop should process most elements 

 Varying iteration count per call may complicate the analysis 

 STAN’s cycles prediction should be accurate for DT1 RAT 

 



Introduction 
(Contributions) 

• Expose a performance assessment methodology 
based on pathology cost analysis 

 

• Estimate an optimization impact through cost 
analysis 

 

• Quantitatively determine various pathology 
impacts on performance 
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Case study 
Dynamic/Static properties after vectorization 

 Trip count: from 2 to 2186 
 LS (11.75 cycles) vs FP (21.75 cycles): CPU 

bound => CQA [cycles per source iteration] 
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Case study 
Static properties after vectorization 

 DIV/SQRT bound 
 Estimated cycles: 21.75 (FP = 21.75) 

 2x compared to scalar (but 4x elements processed) 
=> 2x speedup 

 First bottleneck: DIV/SQRT 
 Next one: 10.25 cycles (P5 port, probably less if 

VECTOR ALIGNED) 
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Case study 
Next optimizations 

 DIV/SQRT bound (detected): 
 2x speedup by vectorization 
 More possible by switching to SP (can be combined 

with Newton Raphson) or reducing number of 
DIV/SQRT operations 

 Inefficient memory accesses: 
 Next bottleneck after DIV/SQRT (and far from it) 
 Optimizations: 

 Using the VECTOR ALIGNED directive 
 Reducing number of strided/indirect accesses 
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Introduction 
(usual performance pathologies) 

50 

Pathologies Issues Work-around 

High number of 
memory streams 

Too many streams for 
HW prefetcher 

See conflict misses 

High number of 
memory streams 

Conflict misses See conflict misses 

Lack of loop 
unrolling 

Significant loop 
overhead, lack of ILP 

Try different unrolling factors, 
unroll and jam for loops nest, try 
classical affinities (compact, 
scatter...) 



Introduction 
(context of performance analysis) 

• Lack of ROI 

– Loosing time on optimizing bottlenecks with no 
significant optimization profit 

– Bottleneck hierarchy: after optimization, how far 
is next bottleneck 

• Parallel analysis 

–  Already existing tools (VAMPIR, SCALASCA, 
VTune, Tau...). But lack of tools for investigating 
intra-core performance 
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Methodology 
Processor features and parallelism 

 Due to some features, lot of performance 
gain inside each core 
 Vectorized vs. scalar: 4x (DP) or 8x (SP) with AVX 
 ILP: ADD // MUL // LOAD // STORE (up to 4x) 
 Memory level: roughly from 1 (L1) to 20 or more 

(RAM) 

• Possible to emulate parallel workload by 
assigning synthetic memory load on the 
remaining cores 
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Introduction 
(Analysis of current tool set 1/2) 

• Some of them cover very well specific but important sub problems 
– MPI issues very well covered for example by TAU, Scalasca, Vampir 
– OpenMP issues are covered but not so well: OpenMP issues very often 

requires precise tracing and if done at source level, it might be 
inaccurate (cf Sacalasca) 

• Lack of global and accurate view: no indication of performance loss 
– Performance pathologies in general but no hint provided on 

performance impact (cf VTUNE with performance events): we do not 
know the pay off if a given pathology is corrected 

– Worse, the lack of global view can lead you to useless optimization: for 
example, for a loop nest exhibiting a high miss rate combined with 
div/sqrt operations, it might be useless to fix the miss rate if the 
dominating bottleneck is FP operations.  

– Source code correlation is not very accurate: for example with VTUNE 
relying on sampling, some correlation might be exhibited but it is 
subject to sampling quality and out of order behavior. 
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Case study 
Original code : Dynamic properties (1) 

 Trip count: from 1 to 8751 (source iteration count) 
 Divide trip count range into 20 equal size interval 
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Case study 
Original code: Static properties 

 Estimated cycles: 43 (FP = 44) 
 Vector efficiency ratio: 25% (4 DP elements can 

fit into a 256 bits vector, only 1 is used) 
 DIV/SQRT bound + DP elements: 

 ~4/8x speedup on a 128/256 bits DIV/SQRT unit (2x 
by vectorization + ~2x by reduced latency) 

 Sandy/Ivy Bridge: still 128 bits 
 => First optimization = VECTORIZATION 
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Case study 
Static properties after vectorization 

 Vectorization ratio 
 100% FP arithmetical instructions 
 65% loads 

 Strided + indirect accesses 
 SCATTER/GATHER not available on Sandy/Ivy Bridge. 

 Vector efficiency ratio (vector length usage) 
 100% FP arithmetical instructions (but 128 bits 

DIV/SQRT unit) 
 43% loads (cannot use vector-aligned loads) 
 25% stores (cannot use vector-aligned stores) 
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Case study 
Static properties after vectorization 

 Vectorization overhead: (n/4) x 87 cycles in the 
main loop vs (n%4) x 43 in the tail loop 
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Original_NSD: removing DIV/SQRT instructions provides a 2x speedup  

  => the bottleneck is the presence of these DIV/SQRT instructions 

FP_NSD: removing loads/stores after DIV/SQRT provides a small additional speedup: 

  next bottleneck 

Conclusion: No space for improvement here (algorithm bound) 

 

DIV/SQRT 

instructions 

removed 

Loads/stores 

+ DIV/SQRT 

instructions 

removed 

Case study 
Dynamic properties after vectorization 
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Tools: CQA (1/4) 

• CQA = Code Quality Analyzer  
• Objectives (provides): 

– Best performance estimation (assuming data in L1) 
– Code quality information (and optimization hints for 

compiler flags and source transformations) 
– First estimation of bottlenecks hierarchy 

• Statically analyzes innermost loops binaries: builds 
DDG 

• Supports Intel 64 micro-architectures from Core 2 to 
Ivy Bridge (Haswell coming soon) 

• Provides metrics and reports at both low and high 
abstraction levels 
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Tools: CQA (2/4, some metrics) 

• Vectorization 
– Vectorization ratio (proportion of vectorized 

instructions among vectorizable instructions) 

– Vector efficiency ratio [experimental] (average vector 
length usage of concerned instructions) 

– For not/partially vectorized codes, potential speedup 
by full vectorization 

• Micro-ops and cycles 
– DIV/SQRT and execution ports => bottlenecks 

– Estimated cycles (and derived metrics like GFLOPS) 
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Tools: CQA (3/4, low level output) 
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Unroll factor: 1 or NA 

 

************************************** 

              Back-end 

************************************** 

       P0     P1    P2   P3   P4   P5 

FU     FP ×/÷ FP +  LD1  LD2  ST   OTH. 
Uops   18.00  17.00 9.50 9.50 3.00 6.00 

Cycles 43.00  17.00 9.50 9.50 3.00 6.00 

 

Cycles executing div or sqrt 

instructions: 20-43 (second value used 

for L1 performances) 

Longest recurrence chain latency 

(RecMII): 3.00 

 

************************************* 

        Vectorization ratios 

************************************* 

All : 0% 

Load : 0% 

Store : 0% 

Mul : 0% 

add_sub : 0% 

Other : 0% 

 

************************************* 

       Vector efficiency ratios 

************************************* 

All : 25% 

Load : 25% 

Store : 25% 

Mul : 25% 

add_sub : 25% 

Other : 25% 

 

************************************* 

         If all data in L1 

************************************* 

cycles: 43.00 

FP operations per cycle: 0.81 (GFLOPS 

at 1 GHz) 

(…) 

Cycles if fully vectorized: 21.50 

100% = 256 bits on 
processors supporting AVX 



Tools: CQA (4/4, high level output) 
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Pathological cases 

------------------ 

Your loop is processing FP elements but is NOT OR PARTIALLY VECTORIZED. Since your 

execution units are vector units, only a fully vectorized loop can use their full power. 

By fully vectorizing your loop, you can lower the cost of an iteration from 43.00 to 

21.50 cycles (2.00x speedup). 

Two propositions: 

 - Try another compiler or update/tune your current one: 

   * icc: use the vec-report option to understand why your loop was not vectorized. If 

"existence of vector dependences", try the IVDEP directive. If, using IVDEP, 

"vectorization possible but seems inefficient", try the VECTOR ALWAYS directive. 

 - Remove inter-iterations dependences from your loop and make it unit-stride. 

 

WARNING: Fix as many pathological cases as you can before reading the following sections. 

 

Bottlenecks 

----------- 

The divide/square root unit is a bottleneck. Try to reduce the number of division or 

square root instructions. If you accept to loose numerical precision, you can speedup 

your code by passing the following options to your compiler: 

icc: this should be automatically done by default 

 

By removing all these bottlenecks, you can lower the cost of an iteration from 43.00 to 

17.00 cycles (2.53x speedup), 



Case study 
Vectorization 

 Using SIMD directive 
 

63 



Tools: Diff. Analysis (1/4), Principles 

• Principle 
– Performance of the original loop is measured 
– Some instructions are removed in the loop body (for 

example loads and stores) 
– Performance of the transformed loop is measured 

• Usage 
– Can perform sampling by transforming only 1 instance 

and abort execution 
– Can replay original loop execution after modified one 
– The Diff. Analysis speedup is an upper bound for 

optimization on the removed instructions 
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Tools: Diff. Analysis (2/4), Typical Transformations 

• Key Transformations 
– LS: FP operations are suppressed (or replaced with NOPS) 
– FP: Load Store operations are suppressed (or replaced with 

NOPS) 
– DL1: All of the Load/Store operations target operands in L1 
– NoDiv (No Sqrt): DIV (SQRT) operations are suppressed or 

replaced with NOPS 
– NoRecur: all of the inter iterations dependencies are suppressed 
– S2L: Stores are replaced with Loads tageting the same address. 

• REMARKS 
– Transformations can be combined 
– All of the loop control instructions are laways preserved. 
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Tools: Diff. Analysis (3/4, FP, LS transformations) 
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Tools: Diff. Analysis (4/4, FP, LS transformations) 

Monitor     - Execution times 
 - Loop Iteration numbers  
 - hardware counter values   



Cluster 1 

14 codelets – Coverage: 

2,13% 

AXPY 

Cluster 2 

10 codelets – Coverage: 3,8% 

AXPY + Accum 

Cluster 4 

2 codelets – Coverage: 1,19% 

Behaviour 

ics_advance_velocity_tfv4a_4th 

Cluster 5 

33 codelets – Coverage: 8,33% 

low byte stored/cycle 

High P1 

Cluster 18 

9 codelets – Coverage: 1,40% 

High byte stored/cycle 

Low P1 

Cluster 9 

12 codelets – Coverage: 

1,03% 

Best array copy efficiency 

Cluster 12 

18 codelets – Coverage: 

7,97% 

IPC > 3,5 

Array copy 

Yales2 codelet clustering 


