
Zakaria Bendifallh, William Jalby, José Noudohouenou,
Emmanuel Oseret, Vincent Palomares, Andres Charif-

Rubial
UVSQ – Perfcloud, Exascale Computing Research

Performance Analysis and
Optimization Challenges

Outline

• Introduction

• Motivation

• Framework

• Dealing with Real Applications

• Conclusions and Future Works

2

Introduction: context of performance analysis

Hardware architectures are becoming increasingly complex
• Complex CPU: out of order, vector instructions
• Complex memory systems: multiple levels including NUMA,

prefetch mechanisms
• Multicore introduces new specific problems, shared/private caches,

contention, coherency
• Software stack is also becoming more and more complex

Each of these hardware mechanisms introduce performance
improvement but to work properly, they require specific code

properties
Performance pathologies: situations potentially inducing performance
loss: hardware poor utilization
Individual performance pathologies are numerous but finite

3

Introduction: usual performance pathologies (1)

4

Pathologies Issues Work-around

ADD/MUL
balance

ADD/MUL parallel execution
(of FMA) underused

Loop fusion, code rewriting e.g.
Use distributivity

Non pipelined
execution
units

Presence of non pipelined
instructions: DIV, SQRT

Loop hoisting, rewriting code
to use other instructions eg.
x86: div and sqrt

Vectorization

Unvectorized loop Use another compiler, check
option driving vectorization,
use pragmas to help compiler,
manual source rewriting

Complex CFG
in innermost
loops

Prevents vectorization
Loop hoisting or code
specialization

Introduction: usual performance pathologies (2)

5

Pathologies Issues Work-around

Unaligned
memory
access

Presence of vector-unaligned
load/store instructions

Data padding, use pragma
and/or attributes to force the
compiler

Bad spatial
locality and/or
non stride 1

Loss of bandwidth and cache
space

Rearrange data structures or
loop interchange

Bad temporal
locality

Loss of perf. due to avoidable
capacity misses

Loop blocking or data
restructuring

4K aliasing
Unneeded serialization of
memory accesses

Adding offset during
allocation, data padding

Associativity
conflict

Loss of performance due to
avoidable conflict misses

Loop distribution, rearrange
data structures

Introduction: usual performance pathologies (3)

6

Pathologies Issues Work-around

False sharing
Loss of BW due to coherence
traffic and higher latency access

Data padding or rearrange data
structures

Cache
leaking

Loss of BW and cache space
due to poor physical-virtual
mapping

Use bigger pages, blocking

Load
unbalance

Loss of parallel perf. due to
waiting nodes

Balance work among threads or
remove unnecessary lock

Bad affinity
Loss of parallel perf. due to
conflict for shared resources

Use numactl to pin threads on
physical CPUs

Introduction: Analysis of current tool set 1/3

• Lack of global and accurate view: no indication of
performance loss (or alternatively ROI)
– Performance pathologies in general but no hint provided on

performance impact (cf VTUNE with performance events): we
do not know the pay off if a given pathology is corrected

– Worse, the lack of global view can lead you to useless
optimization: for example, for a loop nest exhibiting a high miss
rate combined with div/sqrt operations, it might be useless to
fix the miss rate if the dominating bottleneck is FP operations.

– Source code correlation is not very accurate: for example with
VTUNE relying on sampling, some correlation might be exhibited
but it is subject to sampling quality and out of order behavior.

7

Introduction: Analysis of current tool set 2/3

• Very often, most of the tools rely on a single
technique/approach (simplified view but globally
correct)
– Vtune is heavily relying on sampling and hardware

events

– Scalasca/Vampir/Tau is heavily relying on tracing and
source code probe insertion

– Sampling aggregates everything together (all
instances): might be counterproductive

– In practice, flexibility has to be offered: tracing might
be more efficient than sampling and vice versa.

8

Introduction: Analysis of current tool set 3/3

• A common pitfall: “Hardware events/counters can
explain everything”
– Counting the number of cache misses is useless unless you

know the average cost of a cache miss which can vary from
5 cycles (near hit) up to 200 cycles (ineffective prefetching,
access all the way to DRAM)

– High values for counters: Reservation Station (ROB) buffers
full. Is it good or bad ?? It just shows that input rate is
larger than output rate. Everything depends upon these
rate values.

– Counters hard to correlate with source code
– Counters change from one processor generation to the

next: not only names but sometimes semantics.

9

Introduction: (usual performance pathologies)

• Well known

• But:

– How to find them ?

– How much do they cost ?

– What to do when multiple pathologies are present ?

• Need to quantify/hierarchize them

10

Our Objectives: Techniques & Modeling

• Get a global hierarchical view of performance
pathologies/bottleneck

• Estimate the performance impact of a given
performance pathology while taking into account
all of the other pathologies present

• Use different tools for pathology detection and
pathology analysis

• Perform a hierarchical exploration of bottlenecks:
the more precise but expensive tools are only used
on a specific well chosen cases

11

Motivation: Example (1)
POLARIS(MD) Loop

12

Example of multi scale problem:
Factor Xa, involved in thrombosis

Anti-Coagulant

(7.46 nm)3

Motivation: Example (2)
Source code and issues

13

6) Vector vs scalar

2) Non-unit stride accesses

4) DIV/SQRT

5) Reductions

Special issues:

Low trip count: from 2 to

2186 at binary level

3) Indirect accesses

Can I detect all these issues with current tools ?
Can I know potential speedup by optimizing them ?

1) High number of

 statements

Tools: CQA

• CQA = Code Quality Analyzer
• Objectives (provides):

– Best performance estimation (assuming data in L1)
– Code quality information (and optimization hints for

compiler flags and source transformations)
– First estimation of bottlenecks hierarchy

• Statically analyzes innermost loops binaries: builds
DDG

• Supports Intel 64 micro-architectures from Core 2 to
Ivy Bridge (Haswell coming soon)

• Provides metrics and reports at both low and high
abstraction levels

14

Tools: Differential Analysis

• A key technique in our approach: Differential Analysis
(DECAN):

• Original Binary (B): I1, I2, I3, I4 (let us assume I2 is a
load Instruction accessing an unknown cache level)

• Patched Binary (B’): I1, I’2, I3, I4 (I2 has been replaced
by I’2: forcing L1 access)

• Perf(B) – Perf(B’) = Marginal Cost of original I2 data
access

• Differential analysis allows:
1. To detect/isolate costly sequence of instructions
2. To estimate accurately their impact on global

performance

15

Tools: Diff. Analysis (2/3, transformations)

16

 FP LS

 Ref

Best Estimated: CQA results

REF: Original code FP: only FP operations are kept LS only Load Store

instructions are kept.

FP / LS = 4,1: FP is by far the major bottleneck

Case study: Original code: Dynamic properties (2)

17

0

5

10

15

20

25

30

35

40

45

50

Best_estimated REF FP LS

C
yc

le
s

p
e

r
so

u
rc

e
 it

e
ra

ti
o

n

Variants

Execution time

Execution time

 FP / LS = 2,07 - Initial value was at 4,1

Case study: Dynamic properties after

vectorization: using SIMD directive

18

0

5

10

15

20

25

30

35

40

45

50

Best_estimated REF FP LS

C
yc

le
s

p
e

r
so

u
rc

e
 it

e
ra

ti
o

n
s

Variants

Execution time

Execution time

Case study: one step further

REF_NSD : removing DIV/SQRT instructions provides a 2x speedup

 => the bottleneck is the presence of these DIV/SQRT instructions

FPLS_NSD : removing loads/stores after DIV/SQRT provides a small additional speedup

Conclusion: No room left for improvement here (algorithm bound)

DIV/SQRT

instructions

removed

Loads/stores +

DIV/SQRT instructions

removed

0

5

10

15

20

25

30

35

40

45

50

Best_estimated REF FP LS REF_NSD FPIS_NSD

C
yc

le
s

p
e

r
so

u
rc

e
 it

e
ra

ti
o

n
s

Variants

Execution time

Execution time

Tools

• MAQAO (Modular Assembly Quality Analyzer and
Optimizer)

– Operates on ELF64 binary files (Linux x86_64
supported)

– Static (CQA) and dynamic (Diff. Anal. + MTL) analysis

• Differential Analysis

– Uses MAQAO (for disassembling, patching…)

– Measures performance impact of some instructions in
loop bodies

20

Tools: MicroTools: Microbenchmarking

• An automatic solution for microbenchmarks
generation in an easy and reusable way

• Measuring the machine’s workload per piece
of code

• Useful for getting an idea of potential
performance impact of different pathologies.

21

Methodology
(basic benchmarking)

• Evaluate ideal bandwidth for load instructions

• Best monocore results among various stream
experiments

– With or without prefetch instructions

– With or without splitting streams

22

Bytes per Cycle

~=

Methodology
(Main steps)

1) Basic bandwidth benchmarks (once per architecture)

2) Keep loops up to 80% execution time (sampling)

3) Trace iterations count for each instance

4) Check for short loop trip count

5) Run differential analysis to qualify/quantify bottlenecks
(assess if CPU or memory bound…)

6) Run static analysis

7) Investigate CPU or memory bound issues

23

Real Application Behavior: MAQAO Perf on Yales2 (CORIA)

HAND TOOLS

Analysis on Yales 2 (1)

5 – Clustering Approach

 First step

Ongoing work

10 static metrics provided by CQA

Innermost

 Yales 2 3D cylinder 0110: 20 clusters

 Cluster A (12 codelets): AXPY

 Cluster B (29 codelets): AXPY and accumulation

 Cluster C (15 codelets): Array copy

 Cluster D (8 codelets): Codelets with good vectorization

 Other clusters…

grad_ptr%int_comm_r3%val(1:grid%ndim,j,inoi) = grad_ptr%int_comm_r3%val(1:grid%ndim,j,inoi) +

 scal_val_r1%val(j)*normal(1:grid%ndim)

04/28/14 – Franck Talbart, Mathieu Bordet, Nicolas Petit

Analysis on Yales 2 (2)

5 – Clustering Approach

Cluster 1
14 codelets – Coverage: 2,13%

AXPY

Cluster 2
10 codelets – Coverage: 3,8%

AXPY + Accum

Cluster 4
2 codelets – Coverage: 1,19%

Behaviour
ics_advance_velocity_tfv4a_4th

Cluster 5
33 codelets – Coverage: 8,33%

low byte stored/cycle
High P1

Cluster 18
9 codelets – Coverage: 1,40%

High byte stored/cycle
Low P1

Cluster 9
12 codelets – Coverage: 1,03%

Best array copy efficiency Cluster 12
18 codelets – Coverage: 7,97%

IPC > 3,5

Array copy

04/28/14 – Franck Talbart, Mathieu Bordet, Nicolas Petit

Analysis on Yales 2 (3)

5 – Clustering Approach

04/28/14 – Franck Talbart, Mathieu Bordet, Nicolas Petit

Vectorization Analysis

Vectorization: 2 levels

 Fully vectorized

 All the uops/instructions are considered as vectorized

 FP arith

 Uops related to float computation only are considered as

vectorized (no load / store, no address computation)

2- Major Results: Potential Impact of Vectorization on Yales2 MS 1D Flame

Conclusions and future works

• Differential analysis provides first-order bottlenecks and related ROI

• For CPU-bound loops, MAQAO CQA provides finer, per-issue ROI

• Real Applications requires more sophisticated techniques to handle large
number of loops

• Performance analysis should cover code design choices for upcoming
architectures

• Future works

– Refine memory bottleneck analysis

– Fully automate the methodology

– Scalability bottlenecks (OpenMP, MPI) ?

– Cost notion: weighting ROI by code complexity

30

Methodology
(hotspot identification)

31

• Identify hot loops using cycles sampling:
– collect the set of hot loops which represent 80% of execution

time

• Identify the most significant loop calls using Loop Count
Tracing
– Constructs the deciles from the traces
– Select a candidate loop call from each decile

• Determine the global ROI of the loops
– launch the LSIS and FPIS versions for the selected loop calls
– Calculate for each loop:

• ROIi = max(LSISi,FPISi)/min(LSISi,FPISi) , then:
• G_ROIi = ROIi ∗ EXEC TIMEi

• Order the loops list following the biggest score of G_ROI

Methodology
(sanity tree)

32

Methodology
(main tree)

33

Methodology
(CPU bound tree)

34

Methodology
(memory bound tree)

35

Methodology
(OpenMP tree)

36

Case study 2: RTM application

• Seismic migration

– Uses the Reverse Time Migration

• Developed by TOTAL (French oil company)

• Fortran, OMP, MPI, OMP+MPI

Interior of the domain (inner) Borders of the domain (damping)

Form of
the

Stencil

Case study 2: RTM application
(Methodology)

The appliance of the methodology on the code
reveals the following:
• Good load balance: equitable work sharing in the

stencil

• Good ROI: The chosen blocking strategy provides a
reasonable gap between the LS and FP streams. The
application is still memory bound

• The last element to check is the possibility of
presence of additional coherency traffic => Enabled
by the use of the S2L DECAN variant

Case study 2: RTM application
(Cache coherence)

Conclusion: Performance are the same => Cache line state change is well
managed by the coherency mechanism

 4 cores Sandy-Bridge

 Open source (LGPL 3.0)

 Currently binary release

 Source release

 Available for x86-64 and Xeon Phi

 UVSQ member of VI-HPS consortium (www.vi-hps.org)
 Audience

 User/Tool developer: analysis and optimization tool

 Performance tool developer: framework services

 TAU: tau_rewrite (MIL)

 ScoreP: on-going effort (MIL) interoperability with other tools: Scalasca,
Vampir, BSC tools

MAQAO

www.maqao.org

The Stage

Hardware architectures are becoming increasingly complex
• Complex CPU: out of order, vector instructions

• Complex memory systems: multiple levels including NUMA, prefetch mechanisms

• Multicore introduces new specific problems, shared/private caches, contention, coherency

• Each of these hardware mechanisms introduce performance improvement but to work properly,

they require specific code properties

Performance pathologies: situations potentially inducing performance loss: hardware

poor utilization
• Individual performance pathologies are numerous but finite (they more or less relate to the

various architectural features listed above. Non exhaustive of performance pathologies

• Scalar versus vector

• Short loop trip count

• Recurrences

• Poor spatial locality

• Poor temporal locality

• Load imbalance

• Parallel loop overhead (Fork/join)

• MPI issues: short messages, early sender/late receiver etc…

• Most of them are well known and well identified

A few major issues with performance pathologies

Some performance pathologies might be quite complex to detect and analyze
• Even for a simple loop nest, pathologies strongly depend upon loop bounds: for example, in

general sweeping row wise through an array stored column wise leads to performance problems.

However performance penalties can be radically different whether your array is tall (a few

columns) versus fat (a large number of columns

• Detection of pathologies can in general be done at the source level, in fact better at the binary

level because the compiler can correct some. However some evaluation can be tricky and complex

to perform: temporal and spatial locality for example.

• Exact performance impact of a given pathology is hard to evaluate and therefore, the return on

investment of correcting is unknown: optimization process advances in the dark.

• Several actors are involved in the performance impact of a performance pathology: algorithm,

source code, compiler, OS/runtime and hardware

A major problem with performance pathologies: even for simple loops, several of

them might coexist and interact
• Since individual pathologies are finite, their combination remain finite however, from a

practical point of view, potential combinatoric explosion of the number of cases to be explored

prevents the use of simple exhaustive search techniques

• Interaction between pathologies can be quite complex

Our objectives and approach

OBJECTIVES

• Get a global hierarchical view of performance pathologies/bottleneck

• Get an estimate of performance impact of a given performance pathology taking

into account all of the other pathologies present

• Use different tools for pathology detection and pathology analysis

• Perform a hierachical exploration of bottlenecks: the more precise but expensive

tools are only used on a specific well chosen cases

General View of our approach

STEP0: offline, microbenchmarck the architecture to get an idea of

potential performance impact of different pathologies

STEP1: standard profiling to detect hot routines more precisely the ones

contributing up to 80% of total execution time.

STEP2: Value tracing: for all loops analyze loop iteration counts and for

array access, array stride (performed via MIL)

STEP3: static analysis via STAN. Assuming operands are in L1, detect and

build bottleneck hierarchy

STEP4: split performance problems between OpenMP issues, CPU issues

and hierarchical memory issues (use of DECAN)

STEP5: refine data access analysis: perform memory tracing with MTL and

group analysis with DECAN

Preliminary step: detecting structural issues

Handling unrolling

 Unrolling can create several binary loops per source loop

 Related binary loops can be clusterized using STAN

Analyzing clusters

 Counting iterations for each binary loop using DECAN

 Using DECAN variant DT1 RAT for the main loop

General observations [may remove this part and transition to the ”Sanity” tree]

 The main loop should process most elements

 Varying iteration count per call may complicate the analysis

 STAN’s cycles prediction should be accurate for DT1 RAT

Introduction
(Contributions)

• Expose a performance assessment methodology
based on pathology cost analysis

• Estimate an optimization impact through cost
analysis

• Quantitatively determine various pathology
impacts on performance

46

Case study
Dynamic/Static properties after vectorization

 Trip count: from 2 to 2186
 LS (11.75 cycles) vs FP (21.75 cycles): CPU

bound => CQA [cycles per source iteration]

47

Case study
Static properties after vectorization

 DIV/SQRT bound
 Estimated cycles: 21.75 (FP = 21.75)

 2x compared to scalar (but 4x elements processed)
=> 2x speedup

 First bottleneck: DIV/SQRT
 Next one: 10.25 cycles (P5 port, probably less if

VECTOR ALIGNED)

48

Case study
Next optimizations

 DIV/SQRT bound (detected):
 2x speedup by vectorization
 More possible by switching to SP (can be combined

with Newton Raphson) or reducing number of
DIV/SQRT operations

 Inefficient memory accesses:
 Next bottleneck after DIV/SQRT (and far from it)
 Optimizations:

 Using the VECTOR ALIGNED directive
 Reducing number of strided/indirect accesses

49

Introduction
(usual performance pathologies)

50

Pathologies Issues Work-around

High number of
memory streams

Too many streams for
HW prefetcher

See conflict misses

High number of
memory streams

Conflict misses See conflict misses

Lack of loop
unrolling

Significant loop
overhead, lack of ILP

Try different unrolling factors,
unroll and jam for loops nest, try
classical affinities (compact,
scatter...)

Introduction
(context of performance analysis)

• Lack of ROI

– Loosing time on optimizing bottlenecks with no
significant optimization profit

– Bottleneck hierarchy: after optimization, how far
is next bottleneck

• Parallel analysis

– Already existing tools (VAMPIR, SCALASCA,
VTune, Tau...). But lack of tools for investigating
intra-core performance

51

Methodology
Processor features and parallelism

 Due to some features, lot of performance
gain inside each core
 Vectorized vs. scalar: 4x (DP) or 8x (SP) with AVX
 ILP: ADD // MUL // LOAD // STORE (up to 4x)
 Memory level: roughly from 1 (L1) to 20 or more

(RAM)

• Possible to emulate parallel workload by
assigning synthetic memory load on the
remaining cores

52

Introduction
(Analysis of current tool set 1/2)

• Some of them cover very well specific but important sub problems
– MPI issues very well covered for example by TAU, Scalasca, Vampir
– OpenMP issues are covered but not so well: OpenMP issues very often

requires precise tracing and if done at source level, it might be
inaccurate (cf Sacalasca)

• Lack of global and accurate view: no indication of performance loss
– Performance pathologies in general but no hint provided on

performance impact (cf VTUNE with performance events): we do not
know the pay off if a given pathology is corrected

– Worse, the lack of global view can lead you to useless optimization: for
example, for a loop nest exhibiting a high miss rate combined with
div/sqrt operations, it might be useless to fix the miss rate if the
dominating bottleneck is FP operations.

– Source code correlation is not very accurate: for example with VTUNE
relying on sampling, some correlation might be exhibited but it is
subject to sampling quality and out of order behavior.

53

Case study
Original code : Dynamic properties (1)

 Trip count: from 1 to 8751 (source iteration count)
 Divide trip count range into 20 equal size interval

54

All iteration counts are equiprobable (probably triangular access)

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Case study
Original code: Static properties

 Estimated cycles: 43 (FP = 44)
 Vector efficiency ratio: 25% (4 DP elements can

fit into a 256 bits vector, only 1 is used)
 DIV/SQRT bound + DP elements:

 ~4/8x speedup on a 128/256 bits DIV/SQRT unit (2x
by vectorization + ~2x by reduced latency)

 Sandy/Ivy Bridge: still 128 bits
 => First optimization = VECTORIZATION

55

Case study
Static properties after vectorization

 Vectorization ratio
 100% FP arithmetical instructions
 65% loads

 Strided + indirect accesses
 SCATTER/GATHER not available on Sandy/Ivy Bridge.

 Vector efficiency ratio (vector length usage)
 100% FP arithmetical instructions (but 128 bits

DIV/SQRT unit)
 43% loads (cannot use vector-aligned loads)
 25% stores (cannot use vector-aligned stores)

56

Case study
Static properties after vectorization

 Vectorization overhead: (n/4) x 87 cycles in the
main loop vs (n%4) x 43 in the tail loop

57

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Ef
fi

ci
e

n
cy

Source loop trip count

Evolution of throughput with source
loop trip count

With 27 iterations, 10%
of time lost due to 3
iterations in the tail
loop

Original_NSD: removing DIV/SQRT instructions provides a 2x speedup

 => the bottleneck is the presence of these DIV/SQRT instructions

FP_NSD: removing loads/stores after DIV/SQRT provides a small additional speedup:

 next bottleneck

Conclusion: No space for improvement here (algorithm bound)

DIV/SQRT

instructions

removed

Loads/stores

+ DIV/SQRT

instructions

removed

Case study
Dynamic properties after vectorization

58

0

5

10

15

20

25

30

35

40

45

50

Best_estimated REF FP LS REF_NSD FPIS_NSD

C
yc

le
s

p
e

r
so

u
rc

e
 it

e
ra

ti
o

n
s

Variants

Execution time

Execution time

Tools: CQA (1/4)

• CQA = Code Quality Analyzer
• Objectives (provides):

– Best performance estimation (assuming data in L1)
– Code quality information (and optimization hints for

compiler flags and source transformations)
– First estimation of bottlenecks hierarchy

• Statically analyzes innermost loops binaries: builds
DDG

• Supports Intel 64 micro-architectures from Core 2 to
Ivy Bridge (Haswell coming soon)

• Provides metrics and reports at both low and high
abstraction levels

59

Tools: CQA (2/4, some metrics)

• Vectorization
– Vectorization ratio (proportion of vectorized

instructions among vectorizable instructions)

– Vector efficiency ratio [experimental] (average vector
length usage of concerned instructions)

– For not/partially vectorized codes, potential speedup
by full vectorization

• Micro-ops and cycles
– DIV/SQRT and execution ports => bottlenecks

– Estimated cycles (and derived metrics like GFLOPS)

60

Tools: CQA (3/4, low level output)

61

Unroll factor: 1 or NA

 Back-end

 P0 P1 P2 P3 P4 P5

FU FP ×/÷ FP + LD1 LD2 ST OTH.
Uops 18.00 17.00 9.50 9.50 3.00 6.00

Cycles 43.00 17.00 9.50 9.50 3.00 6.00

Cycles executing div or sqrt

instructions: 20-43 (second value used

for L1 performances)

Longest recurrence chain latency

(RecMII): 3.00

 Vectorization ratios

All : 0%

Load : 0%

Store : 0%

Mul : 0%

add_sub : 0%

Other : 0%

 Vector efficiency ratios

All : 25%

Load : 25%

Store : 25%

Mul : 25%

add_sub : 25%

Other : 25%

 If all data in L1

cycles: 43.00

FP operations per cycle: 0.81 (GFLOPS

at 1 GHz)

(…)

Cycles if fully vectorized: 21.50

100% = 256 bits on
processors supporting AVX

Tools: CQA (4/4, high level output)

62

Pathological cases

Your loop is processing FP elements but is NOT OR PARTIALLY VECTORIZED. Since your

execution units are vector units, only a fully vectorized loop can use their full power.

By fully vectorizing your loop, you can lower the cost of an iteration from 43.00 to

21.50 cycles (2.00x speedup).

Two propositions:

 - Try another compiler or update/tune your current one:

 * icc: use the vec-report option to understand why your loop was not vectorized. If

"existence of vector dependences", try the IVDEP directive. If, using IVDEP,

"vectorization possible but seems inefficient", try the VECTOR ALWAYS directive.

 - Remove inter-iterations dependences from your loop and make it unit-stride.

WARNING: Fix as many pathological cases as you can before reading the following sections.

Bottlenecks

The divide/square root unit is a bottleneck. Try to reduce the number of division or

square root instructions. If you accept to loose numerical precision, you can speedup

your code by passing the following options to your compiler:

icc: this should be automatically done by default

By removing all these bottlenecks, you can lower the cost of an iteration from 43.00 to

17.00 cycles (2.53x speedup),

Case study
Vectorization

 Using SIMD directive

63

Tools: Diff. Analysis (1/4), Principles

• Principle
– Performance of the original loop is measured
– Some instructions are removed in the loop body (for

example loads and stores)
– Performance of the transformed loop is measured

• Usage
– Can perform sampling by transforming only 1 instance

and abort execution
– Can replay original loop execution after modified one
– The Diff. Analysis speedup is an upper bound for

optimization on the removed instructions

64

Tools: Diff. Analysis (2/4), Typical Transformations

• Key Transformations
– LS: FP operations are suppressed (or replaced with NOPS)
– FP: Load Store operations are suppressed (or replaced with

NOPS)
– DL1: All of the Load/Store operations target operands in L1
– NoDiv (No Sqrt): DIV (SQRT) operations are suppressed or

replaced with NOPS
– NoRecur: all of the inter iterations dependencies are suppressed
– S2L: Stores are replaced with Loads tageting the same address.

• REMARKS
– Transformations can be combined
– All of the loop control instructions are laways preserved.

65

Tools: Diff. Analysis (3/4, FP, LS transformations)

66

 FP LS

 Ref

Tools: Diff. Analysis (4/4, FP, LS transformations)

Monitor - Execution times
 - Loop Iteration numbers
 - hardware counter values

Cluster 1

14 codelets – Coverage:

2,13%

AXPY

Cluster 2

10 codelets – Coverage: 3,8%

AXPY + Accum

Cluster 4

2 codelets – Coverage: 1,19%

Behaviour

ics_advance_velocity_tfv4a_4th

Cluster 5

33 codelets – Coverage: 8,33%

low byte stored/cycle

High P1

Cluster 18

9 codelets – Coverage: 1,40%

High byte stored/cycle

Low P1

Cluster 9

12 codelets – Coverage:

1,03%

Best array copy efficiency

Cluster 12

18 codelets – Coverage:

7,97%

IPC > 3,5

Array copy

Yales2 codelet clustering

