29/09/2014

Panorama de |la
programmation parallele
dans le HPC

F. Bodin
Irisa / Université de Rennes

Introduction

Parallel programming languages are at the core of software
development

— Ubiquitous parallel machines
— Legacy codes extremely important

Languages and APIs are always based on some hardware
characteristics assumptions

— Deep changes in HW raises language / APIs questions
Long term trend due to the power wall
— Requires reviewing the design of application codes

HPC reaching more technical fields
— e.g. high frequency trading, ...

History Repeating Itself

In 1994, after pioneer companies Thinking Machines and
Kendall Square Research went Chapter 11, Ken Kennedy
wrote : Is Parallel Computing Dead?

[...] So | assert that parallel computing is not dead, it is simply
suffering through a period of growing pains. We are coming
to realize that parallel computing is really a software
problem. Therefore, we should not be too distressed when a
company drops out of the crowded hardware market. The
industry needs software and standards to make writing
parallel applications easier. If it gets them, the whole
industry will grow, creating more business for everyone.

Outline

* Parallel programming in context
* General purpose parallel languages and APlIs
* The response to heterogeneity (e.g. GPGPU)

* Languages / APIs still to emerge

29/09/2014

2014: Intel Haswell-EP 18x2HTx2sockets = 72
Intel vy Bridge-EX 15 cores/sockets, 2threads/core, max 8 sockets = 240

Evolution of Processing Units in Future Processors
10000™

CUDA/NVIDIA 2012 forecast
Tesla release
35 ——Clock Frequency
- CPU
—4+—GPU
3 1000
25
2
=
=]
o 2
&5 2 100 &
@
Specialized S
Manycores (GPGPU) o
15 +—#
Frequency based
Performance
1 Improvement Era Manycores processors 10 * Frequency based on
re;(;l:::’g;;h;gz?;val Intel Processor (max.)
05 Non migrated applications ** Number of
do not scale up Processing Units
(~cores x threads)
0 T 1 Intel CPU, NVIDIA GPU
N NI
& o ® ¢
S S

2014: Nvidia K40 - 2880 CUDA cores °

Parallel Programming in Context

* Part of a large ecosystem

— Programming languages and APlIs a tiny part of the
equations

 Scalability, a primary concern
— Ensuring scalability on a wide range of systems

e Economical constraints driving engineering
consideration
— e.g. code validation issue can be a roadblock

29/09/2014

Current HPC Data Flow

= <
—= c — distributed
L 54 SN

scientist

data pre-processing compute intensive
/ assimilation data post-processing

Sensor&

data

- in situ
High feedback
quality

refined
data/simulation

simulation data
storage

Code Technical Main Matters

* Code validation

 Surviving at least 4 generations of (very
different) machines

* Sophisticated runtime techniques needed to
optimize resources and energy consumption

* Data structure organization
* |0 sub-systems / data management
* Application development process

29/09/2014

29/09/2014

Code Economical Factors

* Cost of development
— How much for a line of code?
* Code exploitation duration
— How long before a major rewrite of the code?
* Support and maintenance
— Am | mastering all issues?
* Performance
— Do | get efficient use of hardware, what are the tradeoffs?
* Technical risk
— Roadblocks ahead? How costly is it to fix it?

Hardware roadmap A
2> NVM

- Photonics

- End of Moore's law

- Energy optimized

-> Driven by data and mobile

A line of code ~10 to 100 euros

Large codes lives decades
- survive 4 very different machines
- based on standards

Thickness
an vary

A
4

Increasing coding efficiency
Increasing performance risk

User set / market size

Protecting Software Investment

Mastering risks if the first engineering
consideration

Standards “a must have” for the long run
— Libraries and tools must be included here

Conservatism is the main driver

— Too much money at stake

— Precedence of functionalities over better technology
Adopting new “languages” has a major impact in
well established practices

— Not only coding but also the deployment process and
training

GP Parallel Languages and APIs

29/09/2014

29/09/2014

GP Parallel Languages and APIs

* Main parallel programming models
— Tasks based ~ shared memories
— Message passing ~ distributed memories

* MPI (~distributed memories) and OpenMP (~shared memories)
— Available on many platforms
— Available for many languages

* Evolving (old) standards
— Many implementations and supporting companies

— Characteristics well understood

* Designed decades ago

Message Passing Interface (MPI)

In this model the tasks send and receive messages in
a synchronous or asynchronous way

— Explicit control of all inter-processor communications

The dominant form of large scale parallelism in
scientific computing

— No thread creation overhead

— Can run on shared or distributed memory architecture

Mainly based on the Single Program Multiple Data
(SPMD) model

SPMD and Message Passing

‘ Array to compute ‘

Data parallel ‘

%econd array half ‘

approach usually
Implemented
this way

first array half } ‘ ‘

hrea,d7 ocess id

I am process 0
m

[—
All processes/threads execute the same program/code

Single Program Multiple Data

D —

part of the data
to transmit

process 1

A MPI Example (1)

int main(int argc, char *argv[]) {

int numtasks, taskid, len;

char hostname [MPI MAX PROCESSOR NAME];
MPI Status status;

MPI Request mySend;

int tab[1l] ={0};

int labell=1;

//just starting the processes

MPI Init(&argc, &argv);

MPI Comm rank (MPI COMM WORLD, staskid) ;

switch (taskid) {

}

mpirun -np 2 messages.exe
Task 0 on hmpp.irisa.fr!
MASTER:
master receiving value 999
Task 1 on hmpp.irisa.fr!
worker asynchronously sending

MPI Finalize();

Number of MPI tasks is: 2

value 989

29/09/2014

A MPI Example (2)

switch (taskid) {
case MASTER:
MPI Recv(tab, 1, MPI INT, WORKERI,
labell, MPI COMM WORLD, &status);

break;

case WORKERIL:
tab[0] = 999;

MPI Isend(tab, 1, MPI_ INT, MASTER,
labell, MPI COMM WORLD, &mySend) ;
break;

99 M

OpenMP Approach

OpenMP is an API for writing multi-threaded applications
— A set of directives

Runtime routines

Environment variables

Target shared memory architectures

Promote incremental parallelization

Available on many platforms/compilers

Available for C/C++ and Fortran

Definition started in the 80s’

Program is decorated to allow the compiler to generate parallel
code

— Mainly fine grain parallelism, mostly loop level

29/09/2014

OpenMP Parallel Model

[shared memory }
fork join
sequential region nested parallelism

* The whole the programming environment assumes some level of
threads management
* Gang scheduling
* Thread / data affinity / migration

OpenMP Example: Parallel Loop

* Loop iterations are distributed to the treads
according to a scheduling policy (here static)

tstart = wallclock();
#fpragma omp parallel for private(j) schedule(static, 3)
for (i=0;i<N;i++) {
for (j=0;3j<N;j++) {
M[i][3] = X[i]1*Y[]];
}

}
tend = wallclock();

vauupuuﬂ'e
Thread 0 Thread 1 Thread 0

20

29/09/2014

10

A Slowly Moving Landscape

* Many HPC parallel codes are implemented using
MPI, with a process per CPU core

— This strategy is unable to efficiently exploit current
multicore memory systems

e Mixing OpenMP and MPI is becoming more
popular
— Code tuning getting more and more complex

* Vectorization importance growing
— Still no satisfactory answers

21

Domain Decomposition Parallelism
Issues with Multicore

forall cells of PE

read properties, state, neighbors;
for time = 1 to end

forall cells of PE

compute next step
update neighbors ghost cells

1. Domain
decomposition

2. Add ghost cells A
for communications

29/09/2014

11

Domain Decomposition Parallelism
Issues with Multicore - 2

32x32x32 celldomain i i :
_. 16x16x16 cell domain | |

ghost cells 2 3
ghost cells / domain cells = 0.42

1
ghost cells 2 &>

ghost cells / domain cells = 0.25
Won’t scale

1 process = 8 processes

The Response to Heterogeneity

29/09/2014

12

The Response to Heterogeneity

* General-Purpose computation on Graphics
Processing Units

— Become very popular with Nvidia releasing CUDA in 2007

— GPGPU exploits GPUs massively parallel computing
architectures as accelerators

* Heterogeneity is a response to the power wall

* Pushes the issues to the programmers

25

Accelerator Offloading Model

Host CPU

Memory data copy
i [

Accelerator

— Memory

Accelerator

010 Eafd (IO
oooooad
O0000a
oooooa

e

Connection Bus
e.g. PCI-X RPC: Remote Procedure Call

26

29/09/2014

13

Stream Computing

* GPUs are expecting massively parallel programs where
a function (kernel) is to be performed on a collection of
data (stream)

— There are no data dependencies between the computation
on different stream elements

— A form of data parallelism

input collections

[T T T T T T [T T T T T T T T]

kernel / function

@QQOOOQOOOOOOOOO

output collection 27

Cuda (1)

e C++ language extension dgtsljn

* Nested SIMT data thread grid
parallel execution copy in il
model

.. T\

* Explicit data transfers r
between host memory o | lo¢k step
and accelerator host execution
memory memory

* Can be used with
OpenMP and MPI 7

* Nvidia devices
— provide access to all threads

advanced hardware copy o\t et exeoine

capabilities e.g. nested ety the kernel

parallelism € kerne
code

28

29/09/2014

14

OpenCL (1)

C language extension

— Similar parallel model to CUDA
— Available on many devices, HPC and mobile
— OpenCL vectorizing friendliness = Intel Xeon Phi

implementation
Underlying assumptions
— same as Cuda

Some issues not covered

— Similar to Cuda + C++, Fortran

— Remote data accesses
— Nested parallelism

— Not all hardware capabilities available
 Standard specification latency

29

OpenACC (1)

Fortran, C, (C++)
directives set

Mainly target legacy
codes
Can be mixed with

regular OpenMP and
MPI

float A[n];

#pragma acc data create (3)
{
#pragma acc kernels present(A)
{
for(1i=0; 1 < n; 1i++) {
A[i] = B[n - i];
}
}

init (C)

#pragma acc kernels present(A)
{
for (i=0; 1 <
C[i] += A[
}
}
}

n; i++) {
] * alpha;

1

29/09/2014

15

Synthesis (1)

Current state of the art reflect contradictory goals

— Power efficiency

— Providing abstract parallel programming API/lang.
Stable, widely adopted, API/lang. difficult to propose
before hardware convergence

— Directives designed to fill the gap

— Shared / global address space is a must have to simplify
accelerator uses

Main roadblock is the algorithm / numerical model in
most cases, not the programming API/language

Languages / APIs Still to Emerge

29/09/2014

16

29/09/2014

Languages / APIs Still to Emerge

» Partitioned Global Address Space
— Simplifying remote data access programming

* Interpreted languages
— Simplifying access

* Domain specific Languages
— Abstracting the issues

Partitioned Global Address Space
(PGAS)

* Provide a virtual partitioned global namespace
— Threads can directly access remote data

* Data is either local or global
— Promote data locality oriented programming

* PGAS Languages: UPC, Co-Array Fortran,
Titanium, etc.

17

PGAS UPC Example

shared int hits;
main (int argc, char **argv) ({
int i, my hits, my trials = 0;
upc_lock_t *hit_lock = upc_all lock alloc();
int trials = atoi(argv[1l]):;
my_trials = (trials + THREADS - 1)/THREADS;
srand (MYTHREAD*17) ;
for (i=0; i < my_trials; i++) my _hits += hit();
upc_lock (hit_lock) ;
hits += my hits;
upc_unlock (hit_lock);
upc_barrier;
if (MYTHREAD == 0)
printf ("PI: %£f", 4.0*hits/trials);

Example from “Beyond UPC”, Kathy Yelick, UC Berkeley

PGAS Strengths and Weaknesses

* Strengths
— Data locality oriented
— One sided communications
— Data management and synchronization part of the
language
— Smaller code size than MPI
* Weaknesses
— SPMD parallel programming model
— Adoption (CAF started in 1998, 2008 standard)
— Parallel libraries

29/09/2014

18

Interpreted Languages

* New ways for access to HPC

— High level approach, dynamic
* For instance Julia (MIT)

— Automatic memory mngt

— One side data access

— Remote function call

— Meta-programming

— Dense, sparse matrices

— Plotting capabilities

— JIT for performance

— Cluster-wise

function buildVector ()
vec=[0:0.01:10];

end

x = buildVector () ;

y = 0.0*x;

for n=1:length (x)
y[n] = cos(x[n]);

end

plot (X/Y) 7

rl = remotecall

(2,buildVector) ;
fetch(rl)

Example of Julia code

Domain Specific Approaches

* Aims at abstracting implementation details
— High level specification of computation
— Code generation for parallel and vector

* Examples

Dirac = ILg0gs
+2xixnxpxILec ®7s

trx Y (VL@ Ic)* @ U@Is) ® Us +~[d))

seL

tre Y ((IE®I0)» @ U-d)s) ® (Ig — v[d])

seL

Definition of Dirac matrix on a Lattice L in QIRAL

— DCT generation (e.g Spiral)
— Stencil code generation (Patus)

— Code generation for quantum chemistry tensor product
— Quantum chromodynamics (QCD), subset of LaTeX (Qiral)

29/09/2014

19

DSL Pros and Cons

* Pros
— High abstraction level, domain specific
— High level semantic = powerful code generation

* Cons
— Integration in legacy / GP codes
— Market size / development cost
— Sustainability, support and maintenance
— Coverage

Perspectives: A Race for Adoption

* PGAS have been there for a long time
— e.g. Co-array Fortran, 2008 standard

* Interpreted languages growing fast
— e.g. Python, Julia successes
— New HPC users (?)

* DSL
— Economical viability
— Integration in development process
— Necessary to hide complexity

40

29/09/2014

20

Conclusion

Hardware is still a moving target

— New technologies such as NVM and photonics likely to
change the landscape

Homogeneous programming is at an end

— More asynchronous parallel tasks to deal with the growth
of the number of cores

Code architectures more important than languages
— But but choices can have expensive consequences
Algorithms more important than architectures

— Exhibiting parallelism is the first roadblock

— Hierarchy of parallelisms

41

Some Readings - 1

Non-Volatile Memory (NVM) technology for Exascale
computing - A position paperhttp://www.hpcmagazine.com/
state-of-the-art/non-volatile-memory-nvm-technology-for-
exascale-computing-a-position-paper/

Processor evolution: what to prepare application codes for?
http://www.hpcmagazine.com/state-of-the-art/processor-
evolution-what-to-prepare-application-codes-for/

Multicore Programming Practices, Multicore association,
2013
http://www.multicore-association.org/workgroup/mpp.php
C. Lin, L. Snyder, “Principles of Parallel Computing”, Pearson,
2008

42

29/09/2014

21

Some Readings - 2

* Keynotes on HPC Languages, Lyon, 2013
— http://labexcompilation.ens-lyon.fr/hpc-

languages/

e Julia

— http://julialang.org

BACKUP SLIDES

44

29/09/2014

22

29/09/2014

Historical growth and forecast in single-
processor frequency

 Based onthe ITRS ™"
roadmap*
100,000
* A dashed line = 1000
represents s
expectations if £
single-processor N
performance had "
continued its
historical trend .

1985 1990 1995 2000 2005 2070 2015 2020
Year of introduction

*http://www.itrs.net 45

Software Development Cost Estimating Guidebook,
Software Technology Support Center Cost Analysis Group, DoD, October 2010

Table 4-5: Typical productivity factors (ESLOC per person month) by size and software type

Software Type D 10 20 50 100 250
KESLOC | KESLOC | KESLOC | KESLOC | KESLOC
Avionics 8 79 69 57 50 42
Business 15 475 414 345 300 250
Command & control 10 158 138 115 100 83
Embedded 8 111 97 80 70 58
Internet (public) 12 475 414 345 300 250
Internet (internal) 15 951 828 689 600 500
Microcode 4-8 79 69 57 50 42
Process control 12 238 207 172 150 125
Real-time 8 79 69 57 50 42
Eﬁ;ﬁiﬁ:;s::;"; e 12 396 345 287 250 208
ggx:gv;dvapned/ 1125- 475 414 345 300 250
Systems/ Drivers 10 158 138 115 100 83
Telecommunication 10 158 138 115 100 83

Source: Adapted and extended from McConnell, Software Estimation, 2006, Putnam and Meyers, Measures for
Excellence, 1992, Putnam and Meyers, Industrial Strength Software, 1997 and Putnam and Meyers, Five Core
Metrics, 2003.

D: complexity measure, higher more complex

KESLOC: thousand effective source lines of code
46

23

Pragma / Directives

Pragma / directives are comments in program taken into account

by the compiler

Specify data or commands to drive the code generation process

Can also be ignored

IVDEP directives

IVDEP directive is specified.

5.4.4 INTEGER CONTROL DIRECTIVE

The IVDEP directive is specified in advance of a DO statement to cause
the compiler's attempts to vectorize the corresponding DO-loop to ignore
any vector dependencies encountered. The IVDEP directive affects only
the single DO-loop it precedes. Note that conditions other than vector
dependencies may cause the inhibiting of vectorization whether or not an

The form of the single integer control directive, INT24, is:

nr24 v [,v]

where INT24 specifies a 24-bit integer data type and

v is the symbolic name of a variable or array.

Extract from CRAY-1 Fortran Reference Manual, 1978

47
Top Programming Languages

1 Java 24, Fortran
2. C 25. Haskell
3. CH++ 26. Lisp
4. Python 27. VHDL
5. C# 28. Delphi
6. Javascript 29. Prolog
7. PHP 30. SAS
8. Ruby 31. Clojure
9. R 32. ASP.Net
10. Matlab 33. Verilog
11. saL 34. Erlang
12. Assembly 35. Cobol
13. PERL 36. Ada
14. Visual Basic 37. Scheme
15. HTML 38. CoffeeScript
16. Objective C 39. TCL
17. Shell 40. Actionscript
18. Arduino 41 ABAP
19. Scala 42. Ladder logic
20. Go 43. Ocaml
21. Processing 44, Apex Code
22. D 45. J
23. Lua 46. Eiffel

47. Forth

48. Scilab

49. NetlLogo
IEEE Spectrum’s 2014 Ranking i

29/09/2014

24

Languages / APIs Analysis Grid

* Base language(s)

* Main constructs (syntax and model)

* Underlying assumptions

* Some issues not covered

* Interactions with other APIs (e.g. MPI)

* Backtracking cost (e.g. cost of rewriting)

* Life expectancy, maintenance cost, portability
(syntax and performance)

* Ecosystem (e.g. libraries, debuggers)
* Who's driving the changes

49

Cuda (2)

* Underlying assumptions
— Can afford data copying (i.e. data can reside on the
accelerator)

— Loop type parallelism, plenty of fine grain parallelism
available

— Uniform threads body behavior (i.e. little control flow
divergence)

* Some issues not covered
— Partial handling of multiple devices (not in the // model)
— MIMD parallelism (but multiple kernels possible)
— Non C++ languages (except for Cuda Fortran from PGI)
— Data structures deep copies

29/09/2014

25

Cuda (3)

Backtracking cost
— Back to OpenMP not (very) costly
Life expectancy, maintenance cost, portability

— Not expected to disappear soon
* Great for teaching

— Not portable, re-tuning specific to device

— Maintenance higher than regular codes (e.g. data
management)

Ecosystem

— Rich libraries, performance tools
Who's driving the changes

— Nvidia

OpenCL (2)

Backtracking cost

— Back to OpenMP not (very) costly but higher than for Cuda
(more runtime)

Life expectancy, maintenance cost, portability

— Not expected to disappear soon

— Portable syntax (about performance later)

— Available on most parallel devices (e.g. CPU, GPUs, FPGA)
— Similar maintenance cost as Cuda

Ecosystem (e.g. libraries, debuggers)

— Limited especially debuggers

Who's driving the changes

— Khronos association, not HPC people

29/09/2014

26

OpenACC (2)

* Underlying assumptions
— Can afford data copying
— Loop, fine grain plenty of parallelism available

— Regular threads behavior (i.e. little control flow
divergence

* Some issues not covered
— Explicit local/shared memory management
— Non inlinable function calls
— Multiple devices
— Data structures deep copies
— Atomics

OpenACC (3)

* Backtracking cost

— Very little, easy to move from OpenACC to OpenMP
* Life expectancy, maintenance cost, portability

— Life expectancy ????

— Same portability as OpenCL

— Data management complicates a bit maintenance but easier
than Cuda or OpenCL

* Ecosystem
— Can use native libraries, debugger available from ISVs
* Who's driving the changes

— Nuvidia, Cray, CAPS, Universities, US gvt Labs, software
companies

— Very active consortium

29/09/2014

27

* Libraries non uniform from one platform to another one

Synthesis (2)

— As important as the APl / lang. for many applications

individual core DVFS)

* HSA adoption broadness?
— Heterogeneous System Architecture

— Founders: AMD, ARM, Qualcomm, TI, ...

Offload model threaten by small-big core multicores (or

OpenACC and OpenMP accelerator potential convergence?

— Building a heterogeneous compute software ecosystem
— http://hsafoundation.com

* Ecosystem still poor, need more ISVs, more visibility, more

time

* Removes PCI-X bottleneck

AMD Fusion APUs

* Accelerated Processing Architecture

Host memory

Device memory

System memory

® o
s e
LZICacl“e Write combiner
@
o Unified GPU
CPU north
bridge

----: coherent memory path

: non coherent memory path

56

29/09/2014

28

