Ressources agricoles et forestières

Herman Höfte INRA, Versailles

Disponibilité de la biomasse: un élément clé pour la réussite de projets afférents

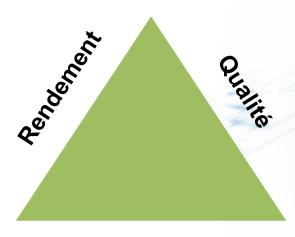
Besoins:

- ✓ Approvisionnement régulier : quantité (ex. 200 000 t/an), qualité
- ✓ Prix de la matière première : 30 50 % des coûts totaux de production
- ✓ Biomasse est variable par nature et entre en compétition avec différents usages
- ✓ Besoins en cultures dédiées variables selon conditions locales.

Résidus agricoles

Résidus forestiers

Cultures dédiées



Production biomasse pour l'énergie : un triple défi

Performance environnementale

Concilier:

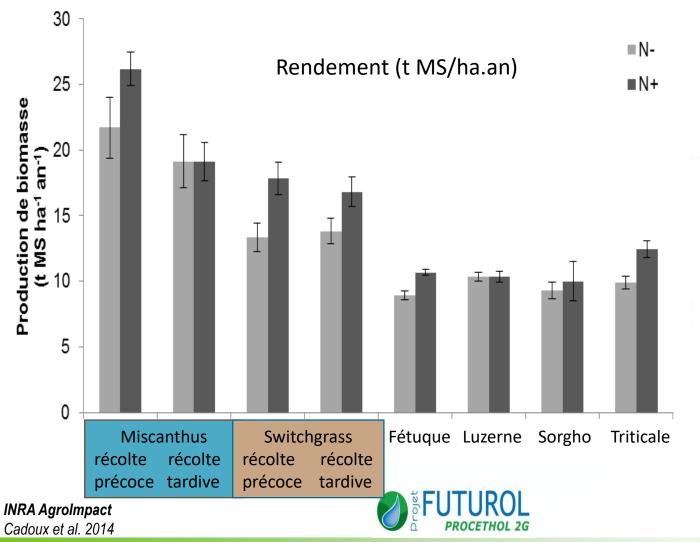
- ✓ Rendement important
- ✓ Haute performance environnementale
 - Faible impact sur l'eau, l'usage de terres et la biodiversité
 - Pas d'interférence avec l'usage alimentaire
 - Maximum de co-bénéfices (maîtrise de l'érosion, revenu, emplois)
 - Acceptation par le citoyen
- ✓ Qualité adaptée au procédés de conversion

Résumé

- Comparaison des performances des cultures pour la production de biomasse lignocellulosique
- Miscanthus
- Sorgho
- Projet IA « Biomass For the Future »
- Contribution de la création variétale à l'amélioration de la production durable de la biomasse

Résumé

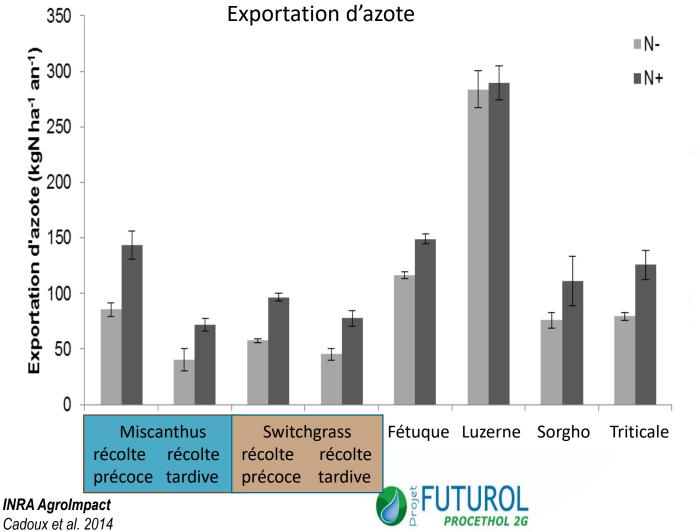
- Comparaison des performances des cultures pour la production de biomasse lignocellulosique
- Miscanthus
- Sorgho
- Projet IA « Biomass For the Future »
- Contribution de la création variétale à l'amélioration de la production durable de la biomasse



Cultures à biomasse: comparaison des performances

Dispositif Biomasse & Environnement 2007-2012 (INRA Estrées-Mons)

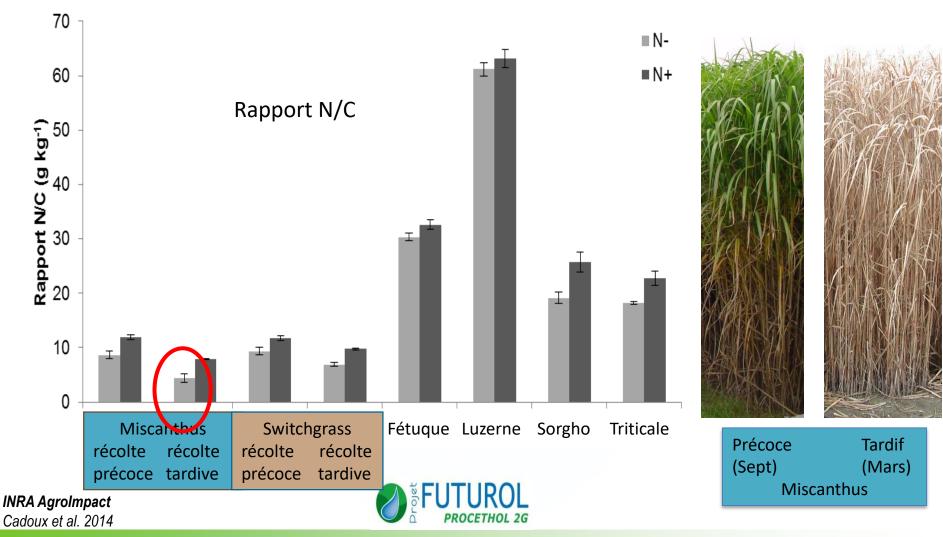
Précoce Tardif (Sept) (Mars) Miscanthus



Cultures à biomasse: comparaison des performances

Dispositif Biomasse & Environnement 2007-2012 (INRA Estrées-Mons)

Précoce Tardif (Sept) (Mars) Miscanthus

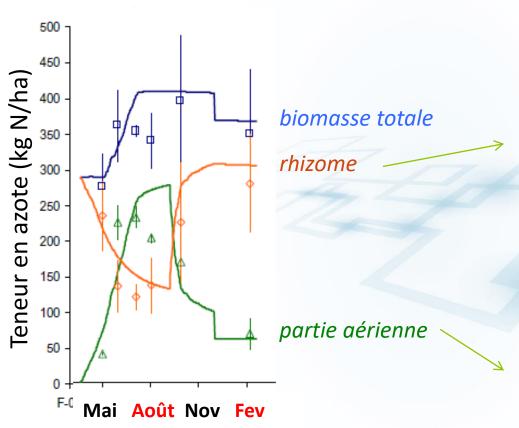


Cultures à biomasse: comparaison des performances

Dispositif Biomasse & Environnement 2007-2012 (INRA Estrées-Mons)

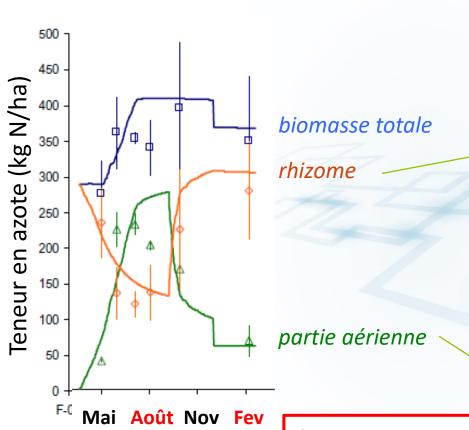
Résumé

- Comparaison des performances des cultures pour la production de biomasse lignocellulosique
- Miscanthus
- Sorgho
- Projet IA « Biomass For the Future »
- Contribution de la création variétale à l'amélioration de la production durable de la biomasse



Recyclage de l'azote chez Miscanthus giganteus

Essai: Récoltes tardives (Mars) et sans apport d'N:



Recyclage de l'azote chez Miscanthus giganteus

Apport en azote faible: Miscanthus ≤ 40 kg N / ha Maïs: > 200 kg N / ha

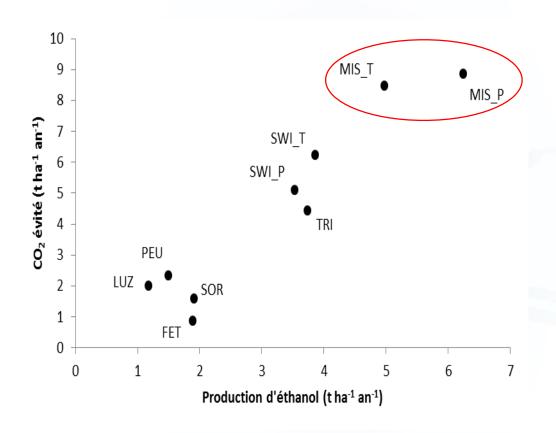
Simulation Loïc Strullu, Unité AgroImpact Bioenergy Research, 2014

Essai: Récoltes tardives (Mars) et

Bilan énergétique : cultures pérennes vs annuelles

Culture	Energie input (MJ/ha)	Energie output (MJ/ha)	Rapport out/in
Miscanthus	9224	300 000	32.5
Saule (TCR)	6003	180 000	30.0
Chanvre (paille)	13 298	112 500	8.5
Blé (grain)	21 465	189 338	8.8
Colza	19 390	72 000	3.8

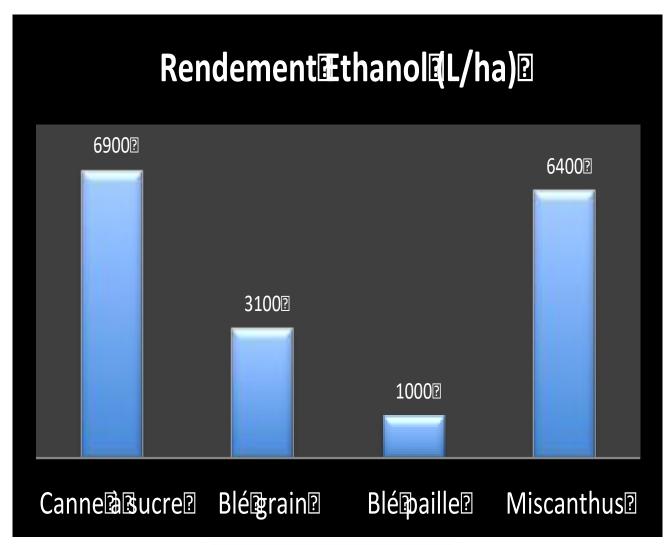
Source: ADAS Consultancy Ltd working for ETSU/UK Department of Trade and Industry



Production d'éthanol et Gaz à Effet de Serre (GES)

CO₂ évité = coût – bénéfice
 = émission totale de GES liée à la fertilisation – CO₂ fossile économisé

INRA AgroImpact d'après Cadoux et al. 2014



1G vs 2G ethanol

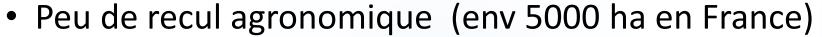
Rendement Miscanthus à Estrées-Mons

Miscanthus: S. Arnoult 2014

Autres cultures: F Martel comm. pers.

Miscanthus x giganteus

- Bilan énergétique favorable:
 - plantes géantes, rendement important
 - photosynthèse C4 efficace, aussi pendant stress hydrique
 - peu d'interventions en champs (un passage/an, après établissement)
- Gestion hydrique favorable:
 - période de croissance tôt dans l'année, moins sensible au stress hydrique pendant l'été
 - système racinaire développé, meilleure exploration du sol
- Recolte tardive (Mars):
 - recyclage efficace de nutriments, ex. azote.
 - biomasse avec faible teneur en eau (15-25%)
 - décalage avec d'autres cultures
- services écosystémiques : réduire l'érosion, teneur en carbone et biodiversité dans le sol, refuge gibier, ...



Miscanthus x giganteus

- Filières: manque de convergence offre-demande
 - agriculteur: manque de débouchés
 - industriel: manque de sécurité d'approvisionnement
- Faible diversité : un seul clone cultivé actuellement
- Multiplication végétative coûteuse

Résumé

- Comparaison des performances des cultures pour la production de biomasse lignocellulosique
- Miscanthus
- Sorgho
- Projet IA « Biomass For the Future »
- Contribution de la création variétale à l'amélioration de la production durable de la biomasse

Sorgho

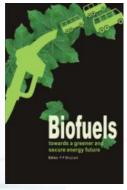
Sorgho

Europe : 250 -400 kha

France: 50 kha

Majoritairement aliments

animaux



Nouveaux usages

énergie

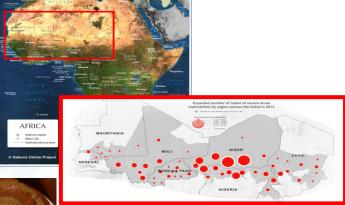
matériaux

Propriétés sorgho:

Rendement (efficacité eau, azote) Variétés systèmes de culture Diversité dans la composition de la biomasse

Tolérance au froid Gestion adventices Variétés « biomasse »

Sorgho: sécurité alimentaire


- Production graines
- 5^e culture (63 Mt/an)
- Pilier pour la sécurité alimentaire
 - Culture de base pour 100-aines de millions
 - Produits divers

- Alimentation
 - Afrique/Asie : alimentation humaine et animale, forage
 - Pays développés et émergents : alimentation animale

Grain

Ensilage

Prairies

Forage

Sorgho: « idéotypes » cibles

GRAIN

FORAGE coupes multiples (Sudan an grain x sudan types)

FORAGE, coupe simple

Type « industriel »

Faible digestibilité, teneur en fibre élevée, sans grain, rdt en biomasse élevé

Type « double utilisation »:

Digestibilité intermédiaire, peu de grains, rdt biomasse élevé, teneur en sucre élevé

Type « ensilage »:

Bonne digestibilité, + grain, rdt biomass plus faible

Sorgho: « idéotype » cibles

© Mélodie Brut

Type « culture dérobée »

Croissance rapide « Puits » d'azote Adaptée à la méthanisation Optimisation de l'utilisation des terres

Résumé

- Comparaison des performances des cultures pour la production de biomasse lignocellulosique
- Miscanthus
- Sorgho
- Projet IA « Biomass For the Future »
- Contribution de la création variétale à l'amélioration de la production durable de la biomasse

Biomass For the Future: Objectifs

Long terme : Cultures optimisées (sorgho et miscanthus, maïs comme modèle) dédiées à la production d'énergie, produits chimiques et matériaux

Cibles:

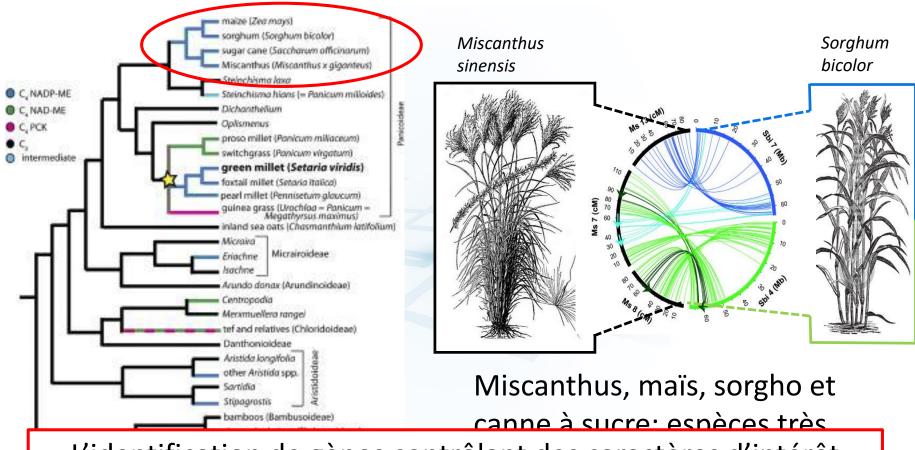
- ✓ Rendement élevé
- ✓ Faible empreinte environnementale
- ✓ Qualité de la biomasse adaptée aux usages industriels
- Moyen terme: Création de chaînes de valeurs biomasse

Résumé

- Comparaison des performances des cultures pour la production de biomasse lignocellulosique
- Miscanthus
- Sorgho
- Projet IA « Biomass For the Future »
- Contribution de la création variétale à l'amélioration de la production durable de la biomasse

Domestication

domestication accélérée



Génomique comparative

L'identification de gènes contrôlant des caractères d'intérêt chez des espèces cultivées (maïs, sorgho) permet de sélectionner les mêmes caractères chez des espèces « sauvages » (miscanthus) à l'aide d'outils moléculaires

Domestication

Critères de sélection:

- ✓ Performance agronomique
- ✓ Impact sur l'environnement
- ✓ Qualité de la biomasse

Domestication

Critères de sélection:

- ✓ Performance agronomique
- ✓ Impact sur l'environnement
- ✓ Qualité de la biomasse

Performances agronomiques et impact sur l'environnement : enjeux pour miscanthus

- Elargir les bases génétiques
- Réduire les couts d'implantation: remplacer la multiplication végétative par semences
- Améliorer la stabilité du rendement en maintenant les performances environnementales
- Variétés adaptées aux terres « marginales »

Performances agronomiques et impact sur l'environnement : enjeux pour miscanthus

- Elargir les bases génétiques
- Réduire les couts d'implantation: remplacer la multiplication végétative par semences
- Améliorer la stabilité du rendement en maintenant les performances environnementales
- Variétés adaptées aux terres « marginales »

Origines de miscanthus

Plusieurs espèces:

Ex.

M. sinensis

M. sacchariflorus

M. x giganteus:

Hybride stérile (triploide) spontanée entre les deux espèces

Performances agronomiques et impact sur l'environnement : enjeux pour miscanthus

- Elargir les bases génétiques
- Réduire les couts d'implantation: remplacer la multiplication végétative par semences
- Améliorer la stabilité du rendement en maintenant les performances environnementales
- Variétés adaptées aux terres « marginales »

Vers la multiplication par graines

Remplacer la multiplication végétative:

- 3000 €/ha, 8 x plus cher que multiplication par graines
- Logistique complexe
- Facteur de multiplication faible, pas adapté aux grandes surfaces
- Solution: variétés multipliées par graines,
- Nouveau problème: risque potentiel de l'invasivité
- Solution:
 - Floraison tardive ou absente. Problème : recyclage nutriments incomplet
 - Production de graines triploïdes

Production de graines triploïdes (3 copies du génome)

- Générer des tétraploïdes et croisement avec diploïdes
- Plantes triploïdes sont stériles
 - Ex. Melon sans graines (« seedless »)

Performances agronomiques et impact sur l'environnement : enjeux pour miscanthus

- Elargir les bases génétiques
- Réduire les couts d'implantation: remplacer la multiplication végétative par semences
- Améliorer la stabilité du rendement en maintenant les performances environnementales
- Variétés adaptées aux terres « marginales »

Exemple: reconquête de sols pollués

Exemple: reconquête de sols pollués

Aujourd'hui: terrains délaissés...

Projet « Cœur Vert »

Réhabilitation des terres Culture de miscanthus sur 150-200 ha

Développement de filières locales : chauffage, matériaux de construction, composites

Chauffage

Materiaux de construction

PLAN D'AMENAGEMENT LIFE SEINE CITY PARK

innamananani, mana

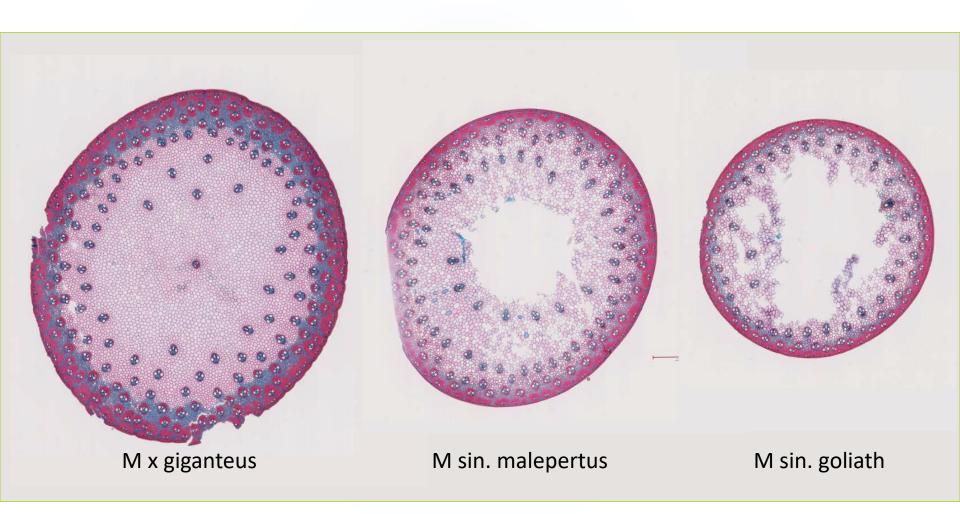
CENTRALITE

Composites polymères

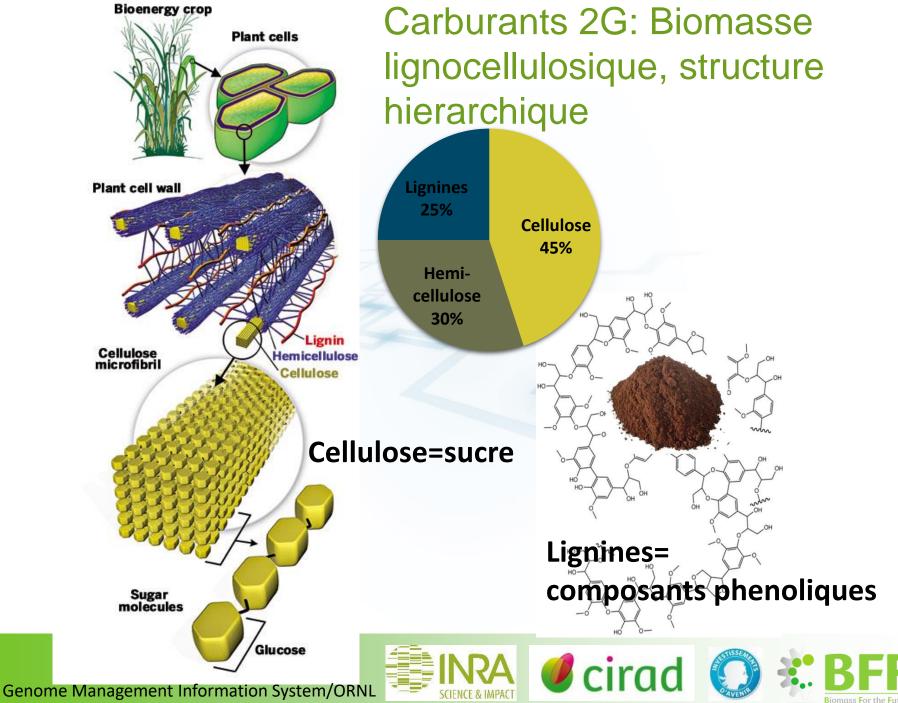
Domestication

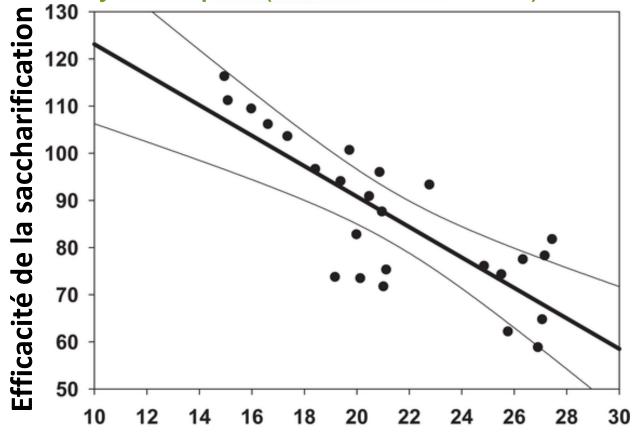
Critères de sélection:

- Performance agronomique
- ✓ Impact sur l'environnement
- ✓ Qualité de la biomasse



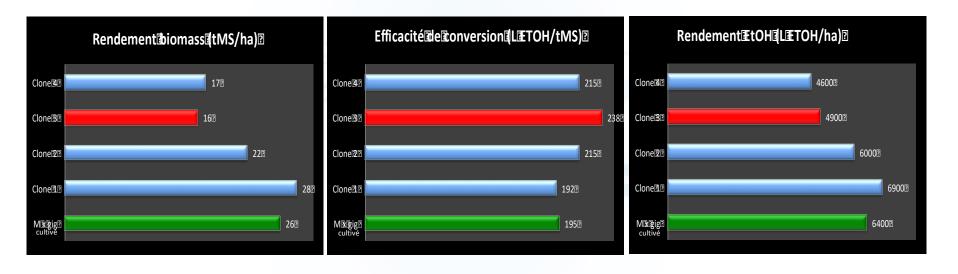
Anatomie et densité de la tige, variation naturelle


Coupes transversales de tiges



Faible teneur en lignines facilite la conversion enzymatique (saccharification)

Teneur en lignines (% de la biomasse) chez différentes variétés (riz)



Ethanol 2G: efficacité de la saccharification

Expérience Pilote procédé FUTUROL

(70 kg de matière végétale sèche)

Variation génétique pour le potentiel de saccharification (>20%): Optimiser rendement en biomasse et qualité

Interaction genotype-environnement affecte la qualité de la biomasse

Lignification des tiges de maïs: impact de la secheresse

Genotype (F4) Genotype (F874) Bleu: riche en sucres Turquoise: riche en Irrigué lignines √ Secheresse > moins de lignines √ Variation génétique pour la lignification en réponse à la secheresse. ✓ Identification des régions chromosomiques contrôlant cette réponse Déficit hydriqu Coupe de tige Coupe de tige Image digitalisé Image digitalisé colorée colorée El Hage et al. 2018

Méthanisation: variation naturelle pour l'efficacité

Tests de méthanisation au laboratoire (INRA Narbonne)

Conclusions

- Disponibilité de la biomasse, un élément clé pour les filières énergétiques
- L'apport des cultures dédiées varie en fonction des conditions locales
- Graminées C4 pérennes favorables pour la production durable de biomasse lignocellulosique
- Sorgho intéressant dans des climats méridionaux
- Besoin de création de variétés adaptées aux conditions de culture et à l'usage de la biomasse
- Miscanthus: élargir les bases génétiques, réduire les coûts d'implantation, améliorer la qualité (saccharification, densité), adaptation aux terres polluées
- Sorgho: développer des variétés adaptées à l'alimentation humaine ou animale, à la culture dérobée et aux carburants 2G, méthanisation et matériaux

Merci pour votre attention

