

Le BigData avance à grands pas

Un exemple dans les Smart Grids

03/07/2013

Michael Defoin-Platel

Outline

SMART GRIDS

GridPocket – Michael Defoin-Platel

What is a Smart Grid ?

→ "An electricity network that can intelligently integrate the actions of all users connected to it (generators, consumers and those that do both) in order to efficiently deliver sustainable, economic and secure electricity supplies"

Smart Grid infrastructures

Smart Grid benefits

Overall goals (European perspective)

- Cutting greenhouse gases by 20%
- Reducing energy consumption by 20% through increased energy efficiency
- Meeting 20% of the EU's energy needs from renewable sources
- Enabling the set-up of an internal European market

Smart Grid benefits

- Detailed goals
 - Meter reading costs reduction and accuracy increase
 - Billing improvement and complaints on meter reading reduction
 - Collection time and rate improvement
 - Remote connection/disconnection
 - Complex tariff system
 - Network planning and operation improvement
 - Demand-side management
 - Maintenance costs reduction and reliability improvement

Smart Grid projects in Europe (2005-2013)

→ 56 billion Euros by 2020 (estimation Pike Research)

SMART GRIDS AND BIGDATA

Example of OpenPDC

- Complete set of applications for processing streaming time-series data in "real-time"
 - Measured data is gathered with GPS-time from multiple input sources, time-sorted and provided to user defined actions, dispersed to custom output destinations for archival
 - Started at the Tennessee Valley Authority (TVA) following 2003 blackout

- 120 Sensors
- 30 samples/second
- 4.3B Samples/day
- Housed in Hadoop

Example of OpenPDC

Example of OpenPDC

• Why Hadoop ?

- 4.3 billions sample a day
- Cost of SAN storage became excessive
- Little analysis possible on SAN due to poor read rates on large amounts (TBs) of data
- Scale Out, not Up
- Linear scalability in cost and processing power
- Robust in the face of hardware failure
- Not fans of vendor lock-in
- The "Haystack" in PMU data typically involved in scanning through TBs of info to find the one particular event we were interested in
- RDBMs simply do not work with high resolution time series data
- Need for Ad-Hoc processing on data to explore network effects and look at how events cascade across the grid

Smart Grid related data

Power data

- power consumption, power quality, voltage and many more
- But also many other relevant information
 - Meteorological parameters, such as temperature, humidity, cloud cover or wind
 - Indoor parameters, such as temperature, ambient noise or brightness
 - Events / Signal / Alerts possibly coming from various entities in the grid
 - Information about the buildings or about the customers
 - Data from Geographical Information Systems
 - Electricity prices from the market or from forecasting systems
 - Rate plans from utility companies
 - Behavioural data collected by CRM

Power Data Collection

ETSI-M2M

- Provides an architecture with multiple service capabilities
- Structures data exchange
- Standardisation of data handling
- Exposes data through HTTP Rest interfaces
- Enables an easy creation of M2M applications

Power Data Collection

The GreenButton initiative

- launched in January 2012
- 35 utilities and electricity suppliers in US
- 36 million homes and businesses
- data exchange format and protocol
- → provide utility customers with easy and secure access to their energy usage information in a consumer-friendly and computerfriendly format

Data Volume

- 35 millions of meters, 1 power measure every 10 min
 - Big size utility such as EDF in France
 - 120 Tb per year, around 40 Gb a day
- 3,5 millions of meters, 1 power measure per min
 - Medium size utility such as Energa in Poland
 - 120 Tb per year, around 40 Gb a day
- 35 000 meters, 1 power + 1 T° measures per sec
 - Service provider such as GridPocket in France
 - 144Tb per year, around 50 Gb a day

Data Integration

 Roberta Bigliani, head of IDC Energy Insights for Europe, commenting on the Smart Grid data:

> "We could be in a situation where we are creating silos [n.b. data in a silo remains sealed o from the rest of the organization] of data rather than making more consistent availability of the data, data needs to be validated and translated into a meta-data model, to create something that is usable by multiple applications. IT people need to work with the line of business to define a master data sort of approach and try to create a layer where all the data coming from meters or operational systems, are transformed into pieces of data that different applications can call."

 \rightarrow Building systems capable of collecting and integrating all these data is one of the main challenges of the Smart Grid.

Vendors landscape

ANALYTICS & APPLICATIONS – Real-Time Intelligence							
ACLARA	Data Raker	(CO)tality) Energate	GE Energy	TELVENT Landis		
IBM	SPACE-TIME	SIEMENS	INERNOC	GRIDNET	accenture ABB	Sas	
SEVERSPRING	C Ecologic	@Eco Factor	eMeter	🚫 OSlooft.	Itron Nest	POWER ANALYTICS"	
DATA MANAGEMI	ENT + MOVEMI	ENT – Platforms					
cisco.			S	NP CI	oud <mark>era</mark> splun	k> VERSANT	
EMC ²	ORACI	_€ Mortonw	vorks	platfora	Ssas Te	RADATA ASTER	
			_		_		
DATA INFRASTRU	JCTURE + STO	RAGE – Private/Pu	ublic Clouds				
Dell	🗇 vm wa	are:	crosoft	🚫 nebula	(intel)	ackspace	
ORA	CLE.	Ø	NetA	pp 🥳	amazon TERADAT/	cisco.	
BIG DATA INFRASTRUCT	URE U	NIVERSAL ACCES	s	DATA + INFO MANAGEMENT	ANALYTICS	SMART GRID	
	+	CLOUD	+		+ A	=	
				1			

GridPocket – Michael Defoin-Platel Source GTM Research 1

Smart Grid analytics

→ Electric utilities will spend \$322.5 million on analytics in the U.S. alone in 2012, a figure that will reach \$1.4 billion by 2020.

Smart Grid data analytics

- Three main categories of application
 - Revenue Management

Load forecasting, theft detection, advanced rate plans, demand/response

Consumer Engagement

Conservation tips, optimal plan rate selection

• Distribution Optimization

Outage management, distribution network planning

Demand/Response

Base Load Supply: _____ Energy supplies that cannot be quickly varied. Includes coal and nuclear options. Intermittent Supply: _____ Energy supplies that vary with natural phenomena such as waves, wind or sunlight available.

Adjustable Supply:—— Energy supplies that can be easily adjusted such as from water (hydro). Demand: Generally demand follows a sinusoidal pattern that peaks during the day and troughs at night. It is usually predicable depending on the weather and economic circumstances.

source: http://www.tececo.com

Smart Grid data analytics

- Analytics based on fundamental operations
 - Aggregation and disaggregation
 - Correlation
 - Trends and exceptions detection
 - Clustering and Forecasting

GRIDPOCKET

GridPocket – Michael Defoin-Platel

Relational Energy Services

Problem with energy efficiency

50% of people find it difficult to read energy graphs

65% find financial incentives too low to be interested in efficiency

92% do not really understand underlying environmental challenges

Sources : EDF PACA 2011, Health Literacy Inst.

Goals

- Energy management through residential customer empowerment
- Personalised long term incentive plans

Présentation Partenaires	Se connecter
	Identifiant
Gérer sa consommation d'électricité pour consommer moins	Mot de passe
à l'aide des compteurs électriques intelligents	Rester connecté
	Se connecter
Le projet de recherche et développement Grid-Teams a pour objectif de sensibiliser les usagers à la	Mot de passe oublié?
réduction de leur	S'inscrire
consommation énergétique au moyen de compteurs électriques intelligents et de services en ligne dédiés à la gestion de la consommation. Ce projet, financé par la région Provence-Alpes-Côte d'Azur dans le cadre du programme « Agir ensemble sur l'énergie », réunit des chercheurs et des entreprises, et se déroulera dans la ville de Cannes à partir de l'été 2011.	Si vous désirez participer au projet, vous pouvez vous inscrire en cliquant sur le bouton ci-dessous. S'inscrire

Setup

- 30 households in the Cannes area
- One year of data
 - o power, temperature

Real-time consumption

Power load

Weekly spendings

Peak / off Peak

Historical consumption vs environment

Comparison with peers

Consumption targets

anonyme_7	1090 TH
anonyme_31	740 TK
anonyme_19	520 TK
anonyme_8	170 TK
anonyme_18	110 TK
anonyme_16	90 TK
demo7	80 TK
anonyme_6	50 TK
cardone.cyril	50 TK
anonyme_21	50 TK
anonyme_5	40 TK
anonyme_4	30 TK
anonyme_3	30 TK
anonyme_12	20 TK
anonyme_22	0 ТК

Semaine du 24/12 au 30/12

Mon classement

7 ème position sur 30 Vous être actuellement en 7 ème position avec 80 TK gagnés cette semaine

EcoTroks

Il rooto 2070 TV à

Energy services

Rev	wards	dépenser	Boutique				
		Messag Vendredi 8 Ju économiseur d	ge in : Achat: Kit 'eau				
Boutique							
	Kit économiseur d'eau		Quantité :				
C)	Ce kit contient un sablier et deux aérateurs. Le de limiter sa douche à 4 min et a	Total : 1000 TK					
Agrandir	Prix : 1000 TK Stock : 27		Acheter				
CANNER	T-shirt et casquette Agenda 21		Quantité :				
S 21	Un ensemble constitué d'une casquette et d'un décorés au logo de l'Agenda 21 de Cannes. (Total : 1000 TK					
Agrandir	Prix : 1000 TK Stock : 29		Acheter				

Unique EcoTroks engagement system

Personal computer WEB

Tablets

Mobile apps

From : Grid-Teams To : You Subject : Congrats!

You have won 1200 eco-troks last week.

SMS Alert*

Letter / invoice*

GridPocket Copyrights 2013

Projects of GridPocket

Home control system

Embedded energy systems

VEDIA

Renewable energy monitoring

Electric car charging

Energy BigData Analytics

Behavioral metering applications

International customers and

partners

Recent awards and honors

- CapEnergies Cluster
- → Innovative SME Label 2010
- CRE (Energy Regulation Commission)
- → **Reference** publications
- Digital Green Growth
- → Best research project award 2011
- CleanTech Open
- → Best start-ups award 2012
- EDF Intelligent Energy
- \rightarrow Award for the best consumer service 2012
- Japan External Trade Organization
- → Selection top 14 global SMEs at Expo 2013

BIGDATA@GRIDPOCKET

GridPocket offers scalable solutions

- Hadoop support
 - Hardware and Architecture specification
 - Platform profiling and tuning
 - Virtualization
 - Code development and optimization
 - Ecosystem: Hive/PIG/Oozie/HDFS/Hbase and more
- Product development
 - Proof of concept
 - Saas

GridPocket offers scalable solutions

- Scalable Smart data Grid Analytics
 - Complex graph-based data integration, if needed
 - Data exploration
 - Data mining , Graph mining
 - Dashboards
 - Deliver reports or workflows + maintenance
- Benchmarking and research activities
 - Investigate new technologies, e.g. in memory computation
 - Compare architectures
 - Profiling of algorithms
 - The BigFoot project, (Eurecom, EPFL, TU Berlin, Symantec and GridPocket)

41

Proof-Of-Concept with MERYSTEMS

US Company

- +1300 employees, 25 offices, 22 countries
- +2000 partners (editors, integrators, final customers)
- +300 000 system
 operated by IS in 88
 countries
- +5 000 000 users

Proof-Of-Concept with MERSYSTEMS

- Original technology
 - Caché : noSQL DB (since 70's)
 - Ensemble : dev.
 Studio, integration, connectors, ...
 - Manage and process:
 - structured data
 - unstructured data
 - o events

GRIDPL

European Space Agency

Goal: Make the largest, most precise
 <u>3-D map of our Galaxy</u>

Challenge: Capture data for 1 billion celestial objects

Expected hundreds
 of new ce

moven

 1,000,000,000 objects

 X
 100 observations per obj

 <u>X</u>
 600 bytes per observatio

 60,000,000,000
 (6)

GP4U powered by IS

GridPocket and Hadoop

1 platform : 3 use cases

- 1. "Smart services for smart customers"
- \rightarrow dedicated to customers
- 2. "Business Intelligence analytics"
- \rightarrow dedicated to utility managers
- 3. "Mining smart grid data"
- → dedicated to data scientists

Meter Data Management

GridPocket MDM specifications

- Built upon Hadoop ecosystem for scalability
- Collect meter data in multiple format, from multiple sources and multiple technologies
- Handle batches (PIG) and streams (FLUME)
- Basic validation, estimation and editing (VEE) functionalities
- Deliver data in the appropriate format to the layer above with low latency and high availability (Hbase / openTSDB)

OpenTSDB

Distributed, Scalable, Time Series Database

- At StumbleUpon
 - 600 M data points/day
 - 70 Billion data points stored
 - > 2000 data points / sec /core

OpenTSDB GRE Distributed, Scalable, Time Series Database

Timeseries Lab

Examples of Basic functionalities

- Compression
 - SAX, Piecewise Linear Approximation
- Frequency
 - Sampling, Moving Average, Interpolate, Slice
- Aggregation
 - Temporal, Spatial, Multi-criteria
- Summarize
 - Avg, Std, Max, Min, Sum
- Distance
 - Correlation, RMS, Dynamic Time Wrapping
- Transform

Normalize

- Examples of Advanced functionalities
 - Trending / Exception detection
 - Clustering / Forecasting
 - Disaggregation

$\rightarrow\,$ Library of a library of PIG UDFs

1. Smart services for smart customers

Empowerment of customers

Historical load curve, Summary

- Provide personalized
 - conservation tips

E.g. based on correlation with weather or detection of excessive baseline

- advanced power-related services
 Comparison with "similar" users
 - Low frequency disaggregation

Evaluate efficiency of Tips and Quality of services

GridPocket – Michael Defoin-Platel

Detect changes and correlate with IHM logs Detect degradation of service

2. Business intelligence analytics

Create virtual meters

Multi-criteria selection and aggregation Historical load curve, Summary

Identify

Exceptions, e.g. using state automata Trends, e.g. days/nights, weekend, seasons Multi-dimensional clusters

Energy demand simulator

3. Mining smart grid data

Implement complex algorithms

- Examples
 - Forecasting daily consumption and peak load Disaggregation using low frequency data

Benchmark complex algorithms

• Select the appropriate data

Publically available : REDD, BLUED, UMASS Smart*, ...

- GridPocket datasets
- Simulated data
- Prepare the data
 - Normalisation, Discretization, Sampling
- Deployment on hybrid cloud
 - Virtualization
 - Privacy issue
- Run and profil algorithms

Accuracy, Time, Scalability, Energy cost

→ Scalable Regression Tree Learning on Hadoop using OpenPlanet

Disaggregation

BIGFOOT PROJECT

BigFoot team

EURECOM

- Ass. Prof. Pietro Michiardi
- Ass. Prof. Marko Vukolic
- Dr. Matteo Dell'Amico

SYMANTEC

- Olivier Thonnard, Sr. Researcher
- Marc Dacier, Sr. Director of Research
- TECHNISCHE UNIVERSITAT BERLIN
 - Georgios Smaragdakis, Sr. Researcher
 - Prof. Anja Feldmann
- EPFL
 - Manos Athanassoulis, Research Assistant
 - Prof. Anastasia Ailamaki
- GRIDPOCKET
 - Filip Gluszak, CEO
 - Michael Defoin-Platel, PhD, Senior Data Scientist

BigFoot is driven by real world applications

- Project philosophy
 - Top-down approach 'Application' requirements and workloads drive our R&D
 - Real Data, real use-cases, real problems
- Two practical use cases
 - Data analytics in Cyber Security (Symantec)
 - Meter data management and analytics (GridPocket)

What is BigFoot ?

- Hadoop on steroids !
 - Custom distribution + new components
 - Complete API compatibility with Hadoop
 - Modular design, use only what you need
- Features
 - Self-tuned deployments on private clouds
 - Several optimization over vanilla Hadoop
 - New interactive query engine

Benefits for BigFoot Users

For the Data Scientist

- High-level language support
 - Optimizations at compile time
 - Machine learning and time-series analysis libraries
- Data interaction made easy
 - New scheduler that avoids starvation
 - $\circ~$ New interactive query engine

For the IT

- Hardware + data consolidation through virtualization
- Performance enhancements to mitigate bottlenecks
- Multi-site add-ons for geo-replication

The BigFoot cloud

- Hardware specification
 - 224 + 32 cores
 - 1 TB RAM
 - 64 + 10 TB of storage
 - 1 Gbps Open(V)Switch interconnect
- Multi-sites
 - Sophia-Antipolis
 - Lausanne
 - Berlin

PHYSICAL PLAN

LOGICAL PLAN

Virtualization and SDN

- Cloud Management Systems: OpenStack
 - Automatic and self-tuned 'application' deployments
 - Amazon EMR-like PaaS
- Resource allocation
 - The curse of elasticity: Resource (De-)fragmentation
 - 'Application'-aware VM Scheduling
- Performance evaluation and Networking
 - Distributed monitoring, measurements
 - The curse of data locality: Datacenter Networking, Flat Topologies and Virtual Networks

NETWORK VIRTUALIZATION

BigFoot Software Stack

66

BigFoot Workpackages

• WP5: Virtualization

- Hadoop is not designed for Virtual Environments
 - HDFS is not elastic (remove/add nodes)
 - Mapping virtual vs real topology (cf VMWare)
 - IO limitation : virtual switchs, virtual disks

→ resource allocation to optimize VM placement for Hadoop

BigFoot Software Stack

68

BigFoot Workpackages

- WP4: Distributed Data store
 - Data storage and distribution are not optimized for the workloads
 - Coherence of the data across nodes / sites ?
- \rightarrow NoDB: adaptive indexing to provide efficient access to raw data
- $\rightarrow\,$ data partitioning and placement optimizations

BigFoot Software Stack

BigFoot Workpackages

- WP3: Analytics and Interactive Query Engines
 - Scheduling is crucial (at FB 180,000/w)
 - Schedulers are not fair in terms of Sojourn time
 - Work is not shared
- \rightarrow New scheduler to avoid starvation
- → New compiler (high level language to MapReduce jobs)
- \rightarrow Work-sharing across jobs and workflows

BigFoot Software Stack

72

BigFoot Workpackages

- WP2: Applications
 - Use cases driven
 - Need to port Cyber-security and Smart Grid analytics over to MapReduce
- → Hadoop time series library
- → Scalable machine learning library but not like Mahout !
- → Simple Pig UDF + Ensemble learning

BigFoot Impact

Research

- Advance state-of-the-art in Big Data technologies and Large-scale Data Mining
- Open Source Software (Apache License)
 - Contribute to the Hadoop ecosystem
 - Contribute to the OpenStack cloud software
- Big Data Market
 - Key enabler for new Big Data solutions
 - Data Scientist friendly approach

CONCLUSIONS

Conclusions

- In France/EU, data volumes are still small but will grow
- Value will come from crossing multiple data sources and efficient mining in line with business needs
- Ok, but what are the business needs ?
- Interested in BigFoot, join the IAB !
- Hadoop and real-time / event processing
- Multiple scale distributed computing
- Cost (money/energy) of the energy efficiency services ?

Thanks

